964 resultados para Equações de Morse


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Morse-Smale complex is a useful topological data structure for the analysis and visualization of scalar data. This paper describes an algorithm that processes all mesh elements of the domain in parallel to compute the Morse-Smale complex of large two-dimensional data sets at interactive speeds. We employ a reformulation of the Morse-Smale complex using Forman's Discrete Morse Theory and achieve scalability by computing the discrete gradient using local accesses only. We also introduce a novel approach to merge gradient paths that ensures accurate geometry of the computed complex. We demonstrate that our algorithm performs well on both multicore environments and on massively parallel architectures such as the GPU.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Morse-Smale complex is a topological structure that captures the behavior of the gradient of a scalar function on a manifold. This paper discusses scalable techniques to compute the Morse-Smale complex of scalar functions defined on large three-dimensional structured grids. Computing the Morse-Smale complex of three-dimensional domains is challenging as compared to two-dimensional domains because of the non-trivial structure introduced by the two types of saddle criticalities. We present a parallel shared-memory algorithm to compute the Morse-Smale complex based on Forman's discrete Morse theory. The algorithm achieves scalability via synergistic use of the CPU and the GPU. We first prove that the discrete gradient on the domain can be computed independently for each cell and hence can be implemented on the GPU. Second, we describe a two-step graph traversal algorithm to compute the 1-saddle-2-saddle connections efficiently and in parallel on the CPU. Simultaneously, the extremasaddle connections are computed using a tree traversal algorithm on the GPU.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O fator de compressibilidade (Z) de gás natural é utilizado em vários cálculos na engenharia de petróleo (avaliação de formações, perda de carga em tubulações, gradiente de pressão em poços de gás, cálculos de balanço de massa, medição de gás, compressão e processamento de gás). As fontes mais comuns de valores de Z são medições experimentais, caras e demoradas. Essa propriedade também é estimada por correlações empíricas, modelos baseados no princípio dos estados correspondentes ou equações de estado (EOS). Foram avaliadas as capacidades das EOS de Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), Patel-Teja (PT), Patel-Teja-Valderrama (PTV), Schmidt-Wenzel (SW), Lawal-Lake-Silberberg (LLS) e AGA-8 para previsão desta propriedade em aproximadamente 2200 pontos de dados experimentais. Estes pontos foram divididos em quatro grupos: Grupo 1 (Presença de frações C7+, Grupo 2 (temperaturas inferiores a 258,15 K), Grupo 3 (pressões superiores a 10000 kPa) e Grupo 4 (pressões inferiores a 10000 kPa). Os cálculos utilizando as equações de estado sob diferentes esquemas de previsão de coeficientes binários de interação foram cuidadosamente investigados. Os resultados sugerem que a EOS AGA-8 apresenta os menores erros para pressões de até 70000 kPa. Entretanto, observou-se uma tendência de aumento nos desvios médios absolutos em função das concentrações de CO2 e H2S. As EOS PTV e a EOS SW são capazes de predizer o fator de compressibilidade (Z) com desvios médios absolutos entre os valores calculados e experimentais com precisão satisfatória para a maioria das aplicações, para uma variada faixa de temperatura e pressão. Este estudo também apresenta uma avaliação de 224 métodos de cálculo de Z onde foram utilizadas 8 correlações combinadas com 4 regras de mistura para estimativa de temperaturas e pressões pseudorreduzidas das amostras, junto com 7 métodos de caracterização das propriedades críticas da fração C7+, quando presente na composição do gás. Em função dos resultados são sugeridas, para diferentes tipos de sistemas, as melhores combinações de correlações com regras de mistura capazes de predizer fatores de compressibilidade (Z) com os menores erros absolutos médios relativos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As análises de erros são conduzidas antes de qualquer projeto a ser desenvolvido. A necessidade do conhecimento do comportamento do erro numérico em malhas estruturadas e não-estruturadas surge com o aumento do uso destas malhas nos métodos de discretização. Desta forma, o objetivo deste trabalho foi criar uma metodologia para analisar os erros de discretização gerados através do truncamento na Série de Taylor, aplicados às equações de Poisson e de Advecção-Difusão estacionárias uni e bidimensionais, utilizando-se o Método de Volumes Finitos em malhas do tipo Voronoi. A escolha dessas equações se dá devido a sua grande utilização em testes de novos modelos matemáticos e função de interpolação. Foram usados os esquemas Central Difference Scheme (CDS) e Upwind Difference Scheme(UDS) nos termos advectivos. Verificou-se a influência do tipo de condição de contorno e a posição do ponto gerador do volume na solução numérica. Os resultados analíticos foram confrontados com resultados experimentais para dois tipos de malhas de Voronoi, uma malha cartesiana e outra triangular comprovando a influência da forma do volume finito na solução numérica obtida. Foi percebido no estudo que a discretização usando o esquema CDS tem erros menores do que a discretização usando o esquema UDS conforme literatura. Também se percebe a diferença nos erros em volumes vizinhos nas malhas triangulares o que faz com que não se tenha uma uniformidade nos gráficos dos erros estudados. Percebeu-se que as malhas cartesianas com nó no centróide do volume tem menor erro de discretização do que malhas triangulares. Mas o uso deste tipo de malha depende da geometria do problema estudado

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assim como na população geral, as necessidades energéticas diárias dos pacientes em tratamento crônico de hemodiálise (HD) podem ser calculadas multiplicando-se o gasto energético de repouso (GER) pelo nível de atividade física. Até o momento, não há estudos que avaliaram se as equações de predição são precisas para se estimar o GER de idosos em HD. O objetivo do presente estudo foi avaliar a concordância entre o GER obtido pela calorimetria indireta e as equações de predição de Harris&Benedict, Schofield e a proposta pelo documento da Organização Mundial de Saúde de 1985 (FAO 1985) nos pacientes idosos em HD. Tratou-se de um estudo transversal, onde foi avaliado o GER de 57 pacientes idosos não institucionalizados (> 60anos) em tratamento crônico de HD mensurado pela calorimetria indireta e comparado com as equações de predição de Harris&Benedict, Schofield e FAO 1985.A concordância entre o GER medido e as equações foi realizada pelo coeficiente de correlação intraclasse e pela análise de Bland-Altman. Neste estudo pode-se observar que o GER estimado pelas 3 equações foi significantemente maior do que o obtido pela calorimetria indireta. Um grau de reprodutibilidade moderado foi observado entre a calorimetria indireta e as equações. A superestimação foi o principal erro observado, sendo presente na metade dos pacientes. A subestimação foi vista em aproximadamente em 10 % dos pacientes. Com base nesses achados podemos concluir que as 3 equações tiveram uma performance similar ao estimar o GER. E estas podem ser utilizadas para calcular o GER de idosos em HD, na medida em que os nutricionistas reconheçam seus possíveis erros, principalmente quando as equações de predição subestimam o GER medido.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta Tese desenvolvemos várias abordagens "Darbouxianas"para buscar integrais primeiras (elementares e Liouvillianas) de equações diferenciais ordinárias de segunda ordem (2EDOs) racionais. Os algoritmos (semi-algoritmos) que desenvolvemos seguem a linha do trabalho de Prelle e Singer. Basicamente, os métodos que buscam integrais primeiras elementares são uma extensão da técnica desenvolvida por Prelle e Singer para encontrar soluções elementares de equações diferenciais ordinárias de primeira ordem (1EDOs) racionais. O procedimento que lida com 2EDOs racionais que apresentam integrais primeiras Liouvillianas é baseado em uma extensão ao nosso método para encontrar soluções Liouvillianas de 1EDOs racionais. A ideia fundamental por tras do nosso trabalho consiste em que os fatores integrantes para 1-formas polinomiais geradas pela diferenciação de funções elementares e Liouvillianas são formados por certos polinômios denominados polinômios de Darboux. Vamos mostrar como combinar esses polinômios de Darboux para construir fatores integrantes e, de posse deles, determinar integrais primeiras. Vamos ainda discutir algumas implementações computacionais dos semi-algoritmos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho que envolve matemática aplicada e processamento paralelo: seu objetivo é avaliar uma estratégia de implementação em paralelo para algoritmos de diferenças finitas que aproximam a solução de equações diferenciais de evolução. A alternativa proposta é a substituição dos produtos matriz-vetor efetuados sequencialmente por multiplicações matriz-matriz aceleradas pelo método de Strassen em paralelo. O trabalho desenvolve testes visando verificar o ganho computacional relacionado a essa estratégia de paralelização, pois as aplicacações computacionais, que empregam a estratégia sequencial, possuem como característica o longo período de computação causado pelo grande volume de cálculo. Inclusive como alternativa, nós usamos o algoritmo em paralelo convencional para solução de algoritmos explícitos para solução de equações diferenciais parciais evolutivas no tempo. Portanto, de acordo com os resultados obtidos, nós observamos as características de cada estratégia em paralelo, tendo como principal objetivo diminuir o esforço computacional despendido.