988 resultados para Equação de advecção
Resumo:
Uma análise utilizando a série de Taylor é apresentada para se estimar a priori os erros envolvidos na solução numérica da equação de advecção unidimensional com termo fonte, através do Método dos Volumes Finitos em uma malha do tipo uniforme e uma malha não uniforme. Também faz-se um estudo a posteriori para verificar a magnitude do erro de discretização e corroborar os resultados obtidos através da análise a priori. Por meio da técnica de solução manufaturada tem-se uma solução analítica para o problema, a qual facilita a análise dos resultados numéricos encontrados, e estuda-se ainda a influência das funções de interpolação UDS e CDS e do parâmetro u na solução numérica.
Resumo:
Este trabalho consiste na solução híbrida da Equação de Advecção-dispersão de solutos unidimensional em meios porosos homogêneos ou heterogêneos, para um único componente, com coeficientes de retardo, dispersão, velocidade média, decaimento e produção dependentes da distância percorrida pelo soluto. Serão estudados os casos de dispersão-advecção em que o retardamento, dispersão, velocidade do fluxo, decaimento e produção variem de forma linear enquanto a dispersividade assuma os modelos linear, parabólico ou exponencial. Para a solução da equação foi aplicada a Técnica da Transformada Integral Generalizada. Os resultados obtidos nesta dissertação demonstram boa concordância entre os problemas-exemplo e suas soluções numéricas ou analíticas contidas na literatura e apontam uma melhor adequação no uso de modelos parabólico no estudo da advecção-dispersão em curto intervalo de tempo, enquanto que o modelo linear converge mais rapidamente em tempos prolongados de simulação. A convergência da série mostrou-se ter dependência direta quanto ao comprimento do domínio, ao modelo de dispersão e da dispersividade adotada, convergindo com até 60 termos, podendo chegar a NT = 170, para os casos heterogêneos, utilizando o modelo de dispersão exponencial, respeitando o critério adotado de 10-4.
Resumo:
Neste trabalho é apresentada a solução da equação de difusão-advecção transiente para simular a dispersão de poluentes na Camada Limite Planetária. A solução é obtida através do método analítico GILTT (Generalized Integral Laplace Transform Technique) e da técnica de inversão numérica da quadratura de Gauss. A validação da solução é comprovada utilizando as concentraçãos obtidas a partir do modelo com as obtidas experimentalmente pelo Experimento de Copenhagen. Nesta comparação foram utilizados os perfis de vento potencial e logaritmo e os parâmetros de turbulência propostos por Degrazia et al (1997) [19] e (2002) [17]. Os melhores resultados foram obtidos utilizando o perfil de vento potencial e o coeficiente de difusão propostos por Degrazia et al (1997). A influência da velocidade vertical é mostrada através do comportamento das concentrações de poluentes na pluma. Além disso, as velocidades verticais e longitudinais geradas pelo Large Eddy Simulation (LES) foram colocadas no modelo para poder simular uma camada limite turbulenta mais realística, a qual apresentou resultados satisfatórios quando comparados com os disponíveis na literatura.
Resumo:
O objetivo deste trabalho é obter uma nova solução analítica para a equação de advecção-difusão. Para tanto, considera-se um problema bidimensional difusivo-advectivo estacionário com coeficiente de difusão turbulenta vertical variável que modela a dispersão de poluentes na atmosfera. São utilizados três coeficientes difusivos válidos na camada limite convectiva e que dependem da altura, da distância da fonte e do perfil de velocidade. A abordagem utilizada para a resolução do problema é a técnica da Transformada Integral Generalizada, na qual a equação transformada do problema difusivo-advectivo é resolvida pela técnica da Transformada de Laplace com inversão analítica. Nenhuma aproximação é feita durante a derivação da solução, sendo assim, esta é exata exceto pelo erro de truncamento. O modelo ´e avaliado em condições moderadamente instáveis usando o experimento de Copenhagen. Apresentam-se os resultados numéricos e estatísticos, comparando os resultados obtidos com dados experimentais e com os resultados da literatura. O modelo proposto mostrou-se satisfatório em relação aos dados dos experimentos difusivos considerados.
Resumo:
Vários métodos analíticos, numéricos e híbridos podem ser utilizados na solução de problemas de difusão e difusão-advecção. O objetivo deste trabalho é apresentar dois métodos analíticos para obtenção de soluções em forma fechada da equação advectivo-difusiva em coordenadas cartesianas que descreve problemas de dispersão de poluentes na água e na atmosfera. Um deles é baseado em regras de manipulação de exponenciais de operadores diferenciais, e o outro consiste na aplicação de simetrias de Lie admitidas por uma equação diferencial parcial linear. Desenvolvem-se regras para manipulação de exponenciais de operadores diferenciais de segunda ordem com coeficientes constantes e para operadores advectivo-difusivos. Nos casos em que essas regras não podem ser aplicadas utiliza-se uma formulação para a obtenção de simetrias de Lie, admitidas por uma equação diferencial, via mapeamento. Define-se um operador diferencial com a propriedade de transformar soluções analíticas de uma dada equação diferencial em novas soluções analíticas da mesma equação. Nas aplicações referentes à dispersão de poluentes na água, resolve-se a equação advectivo-difusiva bidimensional com coeficientes variáveis, realizando uma mudança de variáveis de modo a reescrevê-la em termos do potencial velocidade e da função corrente correspondentes ao respectivo escoamento potencial, estendendo a solução para domínios de contornos arbitrários Na aplicação referente ao problema de dispersão de poluentes na atmosfera, realiza-se uma mudança de variáveis de modo a obter uma equação diferencial parcial com coeficientes constantes na qual se possam aplicar as regras de manipulação de exponenciais de operadores diferenciais. Os resultados numéricos obtidos são comparados com dados disponíveis na literatura. Diversas vantagens da aplicação das formulações apresentadas podem ser citadas, a saber, o aumento da velocidade de processamento, permitindo a obtenção de solução em tempo real; a redução da quantidade de memória requerida na realização de operações necessárias para a obtenção da solução analítica; a possibilidade de dispensar a discretização do domínio em algumas situações.
Resumo:
Neste trabalho apresenta-se uma solução analítica para a dispersão vertical turbulenta em uma Camada Limite Convectiva e em uma Camada Limite Estável. A equação analisada considera a difusão com velocidades finitas, o que representa o transporte turbulento fisicamente correto. Considerando o caráter não-local, adicionam-se na equação que representa uma fonte área instantânea, termos como: o tempo de relaxação, a assimetria, a escala de tempo Lagrangeana e a velocidade turbulenta vertical. A solução é obtida utilizando-se a técnica da Transformada de Laplace. Os parâmetros que encerram a turbulência são derivados da teoria de difusão estatística de Taylor combinada com a teoria de similaridade. Foram utilizados coeficientes de difusão especáficos para cada uma das camadas. A transformada inversa é obtida através do esquema numérico de quadratura Gaussiana. São apresentadas várias simulações para diferentes alturas de fonte área e obtém-se o valor da concentração para alturas próximas ao solo e próximas ao topo da Camada Limite Planetária. A inserção do termo de contra-gradiente na equação resultou em uma pequena influência na concentração de poluentes, observada de forma mais expressiva na Camada Limite Convectiva.
Resumo:
Neste trabalho é desenvolvida uma solução semi-analítica para a Equação de Langevin assintótica (Equação de Deslocamento Aleatório) aplicada à dispersão de poluentes na Camada Limite Convectiva (CLC). A solução tem como ponto de partida uma equação diferencial de primeira ordem para o deslocamento aleatório, sobre a qual é aplicado o Método Iterativo de Picard. O novo modelo é parametrizado por um coeficiente de difusão obtido a partir da Teoria de Difusão Estatística de Taylor e de um modelo para o espectro de turbulência, assumindo a supersposição linear dos efeitos de turbulência térmica e mecânica. A avaliação do modelo é realizada através da comparação com dados de concentração medidos durante o experimento de dispersão de Copenhagen e com resultados obtidos por outros quatro modelos: modelo de partículas estocástico para velocidade aleatória (Modelo de Langevin), solução analítica da equação difusão-advecção, solução numérica da equação difusão-advecção e modelo Gaussiano. Uma análise estatística revela que o modelo proposto simula satisfatoriamente os valores de concentração observados e apresenta boa concordância com os resultados dos outros modelos de dispersão. Além disso, a solução através do Método Iterativo de Picard pode apresentar algumas vantagem em relação ao método clássico de solução.
Resumo:
Neste trabalho, examinamos em detalhe resultados recentes apresentados em [Zingano, 1999], [Zingano, 2004], [Zingano, 1996a] [T. Hagstrom, 2004] sobre o comportamento de soluções para equações (escalares) de ad vecção-difusão nãolineares, da forma Ut + div(f(u)) = div(A(u)V'u), x E ]Rn, t > O correspondentes a estados iniciais u(., O) E LI(]Rn) n DXJ(JRn).Aqui, A(u) E ]Rn é uniformemente positiva definida para todos os valores de u em questão, e f( u) = (f1(u),..., fn(u)) corresponde ao fluxo advectivo, com A, f suaves. Entre os vários resultados, tem-se em particular os limites assintóticos . !!. (I_l) Iml (47rÀ)~ 11mt2 p Ilu(" t)IILP(JRn) = (4 À)!!. - , t-++oo 7r 2 P para cada 1 :::;P :::;00, uniformemente em p, bem como lim t~(l-i) Ilu(" t) - u(',t)IILP(JRn) = O, t-++oo 1:::; p:::; 00 para duas soluçõesu(', t), u(', t) quaisquer correspondentesa estados iniciais u(', O),u(', O)E LI (]Rn) n Loo(]Rn) com a mesma massa, isto é, r u(x, O)dx = r u(x,O)dx JJRn JJRn Outra propriedade fundamental, válida em dimensão n ;:::2, é lim t%(l-~) Ilu(" t) - v(', t) IILP(JRn) = O t-++oo para cada 1 :::;p :::; 00, se v(', t) é solução da equação de advecção-difusão linear Vt + f (O) . V'v= div(A(O)V'v), x E ]Rn, t > O, com u(', O),v(', O) E U(]Rn) n Loo(JRn) tendo a mesma massa. Outros resultados de interesse são também discutidos.
Resumo:
Um grande desafio da atualidade é a preservação dos recursos hídricos, bem como o correto manejo dos mesmos, frente à expansão das cidades e às atividades humanas. A qualidade de um corpo hídrico é usualmente avaliada através da análise de parâmetros biológicos, físicos e químicos. O comportamento de tais parâmetros pode convenientemente ser simulado através de modelos matemáticos e computacionais, que surgem assim como uma ferramenta bastante útil, por sua capacidade de geração de cenários que possam embasar, por exemplo, tomadas de decisão. Nesta tese são discutidas técnicas de estimação da localização e intensidade de uma fonte de contaminante conservativo, hipoteticamente lançado na região predominantemente fluvial de um estuário. O lançamento aqui considerado se dá de forma pontual e contínua e a região enfocada compreendeu o estuário do Rio Macaé, localizado na costa norte do Rio de Janeiro. O trabalho compreende a solução de um problema direto, que consiste no transporte bidimensional (integrado na vertical) desse contaminante hipotético, bem como a aplicação de técnicas de problemas inversos. Para a solução do transporte do contaminante, aqui modelada pela versão 2D horizontal da equação de advecção-difusão, foram utilizados como métodos de discretização o Método de Elementos Finitos e o Método de Diferenças Finitas. Para o problema hidrodinâmico foram utilizados dados de uma solução já desenvolvida para estuário do Rio Macaé. Analisada a malha de acordo com o método de discretização, foram definidas a geometria do estuário e os parâmetros hidrodinâmicos e de transporte. Para a estimação dos parâmetros propostos foi utilizada a técnica de problemas inversos, com o uso dos métodos Luus-Jaakola, Algoritmo de Colisão de Partículas e Otimização por Colônia de Formigas para a estimação da localização e do método Seção Áurea para a estimação do parâmetro de intensidade da fonte. Para a definição de uma fonte, com o objetivo de propor um cenário experimental idealizado e de coleta de dados de amostragem, foi realizada a análise de sensibilidade quanto aos parâmetros a serem estimados. Como os dados de amostragem de concentração foram sintéticos, o problema inverso foi resolvido utilizando-os com e sem ruído, esse introduzido de forma artificial e aleatória. Sem o uso de ruído, os três métodos mostraram-se igualmente eficientes, com uma estimação precisa em 95% das execuções. Já com o uso de dados de amostragem com ruídos de 5%, o método Luus-Jaakola mostrou-se mais eficiente em esforço e custo computacional, embora todos tenham estimado precisamente a fonte em 80% das execuções. Considerando os resultados alcançados neste trabalho tem-se que é possível estimar uma fonte de constituintes, quanto à sua localização e intensidade, através da técnica de problemas inversos. Além disso, os métodos aplicados mostraram-se eficientes na estimação de tais parâmetros, com estimações precisas para a maioria de suas execuções. Sendo assim, o estudo do comportamento de contaminantes, e principalmente da identificação de fontes externas, torna-se uma importante ferramenta para a gestão dos recursos hídricos, possibilitando, inclusive, a identificação de possíveis responsáveis por passivos ambientais.
Resumo:
O objetivo deste trabalho é obter os parâmetros turbulentos para o crescimento da camada limite planetária (CLP), durante a realizaçãoo do experimento Olad (Overland along wind dispersion experiment), conduzido na transição da noite para o dia. Nesta hora a CLP exibe uma altura, geralmente, pequena, disponibilizando pouco volume para a dispersão dos poluentes. Assim, concentrações superficiais elevadas podem ocorrer, atacando materiais, plantas e a saúde da população. Logo, conhecer os parâmetros do crescimneto é de fundamental importância para o correto modelamento da dispersão atmosférica ao amanhecer. A validação dos parâmetros é realizada a partir da solução da equação da difusão-advecção bidimensional, pelo método da GILTT (Generalized Integral Laplace Transform Technique). São empregados coeficientes de difusão turbulenta (problema de fechamento) dependentes da estabilidade atmosférica. As concentrações superficiais tridimensionais são obtidas através do espalhamento lateral da pluma com distribuição gaussiana. Apresentam-se os resultados numéricos e estatísticos, comparando os resultados obtidos com os dados experimentais. O modelo proposto mostrou-se aceitável em relação aos dados do experimento.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A avaliação do risco a contaminação e a escolha de técnicas de remediação de poluentes em aquíferos fraturados depende da quantificação dos fenômenos envolvidos no transporte de solutos. A geometria da fratura, usualmente caracterizada pela abertura, é o principal parâmetro que indiretamente controla o transporte nos aquíferos fraturados. A simplificação mais comum desse problema é assumir que as fraturas são um par de placas planas e paralelas, isto é, com uma abertura constante. No entanto, por causa do limitado número de trabalhos experimentais, não está esclarecida a adequabilidade do uso de uma abertura constante para simular o transporte conservativo em fraturas do Aquífero Serra Geral (ASG), Brasil. O objetivo deste trabalho é avaliar a influência da abertura de uma fratura natural do Aquífero Serra Geral sob o transporte conservativo de solutos. Uma amostra natural de basalto fraturado foi usada em um experimento hidráulico e de transporte de um traçador conservativo (escala de laboratório). O campo de abertura foi medido usando a técnica avançada, de alta resolução e tridimensional, chamada microtomografia computadorizada de raios-X. A concentração de traçador medida foi utilizada para validar uma solução analítica unidimensional da Equação de Advecção-dispersão (ADE). O desemprenho do ajuste da ADE às curvas de passagem experimentais foi avaliado para quatro diferentes tipos de aberturas constantes. Os resultados mostraram que o escoamento de água e o transporte de contaminantes pode ocorrer através de fraturas micrométricas, ocasionando, eventualmente, a contaminação do ASG. A abertura de balanço de massa é a única que pode ser chamada propriamente de \"abertura equivalente\". O uso de aberturas constantes na ADE não permitiu representar completamente o formato das curvas de passagem porque o campo de velocidade não é uniforme e intrinsicamente bidimensional. Portanto, na simulação do transporte deve-se incorporar a heterogeneidade da abertura da fratura.
Resumo:
Neste trabalho obtém-se uma solução analítica para a equação de advecção-difusão aplicada a problemas de dispersão de poluentes em rios e canais. Para tanto, consideram-se os casos unidimensionais e bidimensionais em regime transiente com coeficientes de difusividade e velocidades constantes. A abordagem utilizada para a resolução deste problema é o método de Separação de Variáveis. Os modelos resolvidos foram simulados utilizando o MatLab. Apresentam-se os resultados das simulações numéricas em formato gráfico. Os resultados de algumas simulações numéricas existem na literatura e puderam ser comparados. O modelo proposto mostrou-se coerente em relação aos dados considerados. Para outras simulações não foram encontrados comparativos na literatura, todavia esses problemas governados por equações diferenciais parciais, mesmo lineares, não são de fácil solução analítica. Sendo que, muitas delas representam importantes problemas de matemática e física, com diversas aplicações na engenharia. Dessa forma, é de grande importância a disponibilidade de um maior número de problemas-teste para avaliação de desempenho de formulações numéricas, cada vez mais eficazes, já que soluções analíticas oferecem uma base mais segura para comparação de resultados.
Resumo:
Neste trabalho, são obtidas diversas propriedades (em especial, referentes ao comportamento ao t -+ +00) das soluções u(', t) da equação linear do calor, Ut = div(AV'u), x E JRn, t > O onde A E JRnxné uma matriz constante simétrica e positiva definida, correspondentes a estados iniciais p-somáveis, i.e., u(x, O) = uo(x), Uo E LP(JRn), onde 1 :::;p < 00. Em particular, é examinado o comportamento de Ilu(., t)IILP(lRn) ao t -+ +00, mostrando-se que Ilu(., t)IILl(lRn)-+ Ikn u(x, O)dXI quando p = 1, e Ilu(-' t)IILP(lRn)-+ O quando p > 1. São analisadas, também, as taxas de decaimento e o comportamento assintótico das soluções u(', t) de equações de advecção-difusão da forma Ut + divf(u) = div(A(u)V'u), x E JRn, t > O correspondentes a estados iniciais p-somáveis e limitados, i.e., u(x, O)= uo(x), u(', O) E LP(JRn) n LOO(JRn), onde 1 :::;p :::; 2. Novamente, é examinado o comportamento de Ilu(" t)IILP(lRn)ao t -+ +00, mostrando-se que Ilu(., t)IILl(lRn)-+ Ikn u(x, O)dxl quando p = 1, e Ilu(" t)IILP(lRn)-+ O quando p > 1. Várias outras propriedades importantes são também discutidas, seguindo principalmente [Silva, 2003], [Crandall e Tartar, 1980], [Hagstrom et al., 2003], [Zingano, 1999], [Zingano, 2004a], [Zingano, 2004b].
Resumo:
É apresentado um modelo de dispersão-advecção de evolução unidimensional que simula a lixiviação de pesticidas em lisímetros ou colunas de solo sob efeito da temperatura média diária do perfil do solo. O modelo matemático e todo o seu conjunto de hipóteses será denominado DAPESTE. Nas simulações numéricas do modelo DAPESTE serão utilizados o método dos elementos finitos para a semi-discretização da variável espacial e o método de Eüler regressivo para a discretização da variável temporal. Serão utilizados métodos de elementos finitos apropriados para problemas de dispersão-advecção nos quais o transporte advectivo predomina sobre o transporte dispersivo. O modelo DAPESTE supõe que as difusividades do pesticida nas fases gasosa e aquosa do solo dependem da temperatura média diária do solo a qual varia periodicamente com a profundidade e com o tempo. O coeficiente de dispersão hidrodinâmico do modelo DAPESTE dependerá da temperatura do solo. O coeficiente de partição água-ar, variando com a temperatura, será determinado pela equação de Clausius-Clapeyron. A equação de van?t Ho® será usada para determinar o coeficiente de sorção do pesticida no solo como função da temperatura. Com a equação de Arrhenius será estimado o efeito da temperatura na taxa de degradação do pesticida. Estas relações de dependência entre os parâmetros do modelo e a temperatura do solo auxiliam sobremaneira na compreensão do destino de pesticidas no solo sob diferentes cenários de temperaturas médias diárias, especialmente a meia vida do pesticida e a concentração lixiviada no perfil do solo.