8 resultados para Epm1
Resumo:
This work shows for the first time that native CSTB polymerizes on addition of Cu2+ and DnaK (Hsp70). Cysteines are involved in the polymerization process and in particular at least one cysteine is necessary. We propose that Cu2+ interacts with the thiol group of cysteine and oxidize it. The oxidized cysteine modifies the CSTB structure allowing interaction with DnaK/Hsp70 to occur. Thus, Cu2+ binding to CSTB exposes a site for DnaK and such interaction allows the polymerization of CSTB. The polymers generated from native CSTB monomers, are DTT sensitive and they may represent physiological polymers. Denatured CSTB does not require Cu2+ and polymerizes simply on addition of DnaK. The polymers generated from denatured CSTB do not respond to DTT. They have characteristics similar to those of the CSTB toxic aggregates described in vivo in eukaryotic cells following CSTB over-expression. Interaction between CSTB and Hsp70 is shown by IP experiments. The interaction occurs with WT CSTB and not with the ïcys mutant. This suggests that disulphur bonds are involved. Methal-cathalyzed oxidation of proteins involves reduction of the metal ion(s) bound to the protein itself and oxidation of neighboring ammino acid residues resulting in structural modification and de-stabilization of the molecule. In this work we propose that the cysteine thyol residue of CSTB in the presence of Cu2+ is oxidized, and cathalyzes the formation of disulphide bonds with Hsp70, that, once bound to CSTB, mediates its polymerization. In vivo this molecular mechanism of CSTB polymerization could be regulated by redox environment through the cysteine residue. This may imply that CSTB physiological polymers have a specific cellular function, different from that of the protease inhibitor known for the CSTB monomer. This hypothesis is interesting in relation to Progressive Myoclonus Epilepsy of type 1 (EPM1). This pathology is usually caused by mutations in the CSTB gene. CSTB is a ubiquitous protein, but EPM1 patients have problems only in the central nervous system. Maybe physiological CSTB polymers have a specific function altered in people affected by EPM1.
Resumo:
Progressive myoclonus epilepsy (PME) has a number of causes, of which Unverricht-Lundborg disease (ULD) is the most common. ULD has previously been mapped to a locus on chromosome 21 (EPM1). Subsequently, mutations in the cystatin B gene have been found in most cases. In the present work we identified an inbred Arab family with a clinical pattern compatible with ULD, but mutations in the cystatin B gene were absent. We sought to characterize the clinical and molecular features of the disorder. The family was studied by multiple field trips to their town to clarify details of the complex consanguineous relationships and to personally examine the family. DNA was collected for subsequent molecular analyses from 21 individuals. A genome-wide screen was performed using 811 microsatellite markers. Homozygosity mapping was used to identify loci of interest. There were eight affected individuals. Clinical onset was at 7.3 +/- 1.5 years with myoclonic or tonic-clonic seizures. All had myoclonus that progressed in severity over time and seven had tonic-clonic seizures. Ataxia, in addition to myoclonus, occurred in all. Detailed cognitive assessment was not possible, but there was no significant progressive dementia. There was intrafamily variation in severity; three required wheelchairs in adult life; the others could walk unaided. MRI, muscle and skin biopsies on one individual were unremarkable. We mapped the family to a 15-megabase region at the pericentromeric region of chromosome 12 with a maximum lod score of 6.32. Although the phenotype of individual subjects was typical of ULD, the mean age of onset (7.3 years versus 11 years for ULD) was younger. The locus on chromosome 12 does not contain genes for any other form of PME, nor does it have genes known to be related to cystatin B. This represents a new form of PME and we have designated the locus as EPM1B.
Resumo:
We report natural remanent magnetization (NRM) directions and geomagnetic paleointensity proxies for part of the Matuyama Chron (0.9-2.2 Ma interval) from two sites located on sediment drifts in the Iceland Basin. At Ocean Drilling Program Sites 983 and 984, mean sedimentation rates in the late Matuyama Chron are 15.9 and 11.5 cm/kyr, respectively. For the older part of the record (>1.2 Ma), oxygen isotope data are too sparse to provide the sole basis for age model construction. The resemblance of the volume susceptibility record and a reference d18O record led us to match the two records to derive the age models. This match, based on Site 983/984 susceptibility, is consistent with available Site 983/984 benthic d18O data. Paleointensity proxies were derived from the slope of the NRM versus anhysteretic remanent magnetization plot for alternating field demagnetization in the 30-60 mT peak field range. Paleointensity lows correspond to polarity reversals at the limits of the Jaramillo, Olduvai, Cobb Mountain, and Réunion Subchrons and to seven excursions in NRM component directions. Magnetic excursions (defined here by virtual geomagnetic polar latitudes crossing the virtual geomagnetic equator) are observed at 932, 1048, 1115, 1190-1215 (Cobb Mountain Subchron), 1255, 1472-1480, 1567-1575 (Gilsa Subchron), and 1977 ka. The results indicate that geomagnetic directional excursions, associated with paleointensity minima, are a characteristic of the Matuyama Chron and probably of polarity chrons in general.