969 resultados para Epipolar geometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel approach based on the use of evolutionary agents for epipolar geometry estimation. In contrast to conventional nonlinear optimization methods, the proposed technique employs each agent to denote a minimal subset to compute the fundamental matrix, and considers the data set of correspondences as a 1D cellular environment, in which the agents inhabit and evolve. The agents execute some evolutionary behavior, and evolve autonomously in a vast solution space to reach the optimal (or near optima) result. Then three different techniques are proposed in order to improve the searching ability and computational efficiency of the original agents. Subset template enables agents to collaborate more efficiently with each other, and inherit accurate information from the whole agent set. Competitive evolutionary agent (CEA) and finite multiple evolutionary agent (FMEA) apply a better evolutionary strategy or decision rule, and focus on different aspects of the evolutionary process. Experimental results with both synthetic data and real images show that the proposed agent-based approaches perform better than other typical methods in terms of accuracy and speed, and are more robust to noise and outliers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this paper is to introduce a methodology for semi-automatic road extraction from aerial digital image pairs by using dynamic programming and epipolar geometry. The method uses both images from where each road feature pair is extracted. The operator identifies the corresponding road featuresand s/he selects sparse seed points along them. After all road pairs have been extracted, epipolar geometry is applied to determine the automatic point-to-point correspondence between each correspondent feature. Finally, each correspondent road pair is georeferenced by photogrammetric intersection. Experiments were made with rural aerial images. The results led to the conclusion that the methodology is robust and efficient, even in the presence of shadows of trees and buildings or other irregularities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship between multiple cameras viewing the same scene may be discovered automatically by finding corresponding points in the two views and then solving for the camera geometry. In camera networks with sparsely placed cameras, low resolution cameras or in scenes with few distinguishable features it may be difficult to find a sufficient number of reliable correspondences from which to compute geometry. This paper presents a method for extracting a larger number of correspondences from an initial set of putative correspondences without any knowledge of the scene or camera geometry. The method may be used to increase the number of correspondences and make geometry computations possible in cases where existing methods have produced insufficient correspondences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Camera calibration information is required in order for multiple camera networks to deliver more than the sum of many single camera systems. Methods exist for manually calibrating cameras with high accuracy. Manually calibrating networks with many cameras is, however, time consuming, expensive and impractical for networks that undergo frequent change. For this reason, automatic calibration techniques have been vigorously researched in recent years. Fully automatic calibration methods depend on the ability to automatically find point correspondences between overlapping views. In typical camera networks, cameras are placed far apart to maximise coverage. This is referred to as a wide base-line scenario. Finding sufficient correspondences for camera calibration in wide base-line scenarios presents a significant challenge. This thesis focuses on developing more effective and efficient techniques for finding correspondences in uncalibrated, wide baseline, multiple-camera scenarios. The project consists of two major areas of work. The first is the development of more effective and efficient view covariant local feature extractors. The second area involves finding methods to extract scene information using the information contained in a limited set of matched affine features. Several novel affine adaptation techniques for salient features have been developed. A method is presented for efficiently computing the discrete scale space primal sketch of local image features. A scale selection method was implemented that makes use of the primal sketch. The primal sketch-based scale selection method has several advantages over the existing methods. It allows greater freedom in how the scale space is sampled, enables more accurate scale selection, is more effective at combining different functions for spatial position and scale selection, and leads to greater computational efficiency. Existing affine adaptation methods make use of the second moment matrix to estimate the local affine shape of local image features. In this thesis, it is shown that the Hessian matrix can be used in a similar way to estimate local feature shape. The Hessian matrix is effective for estimating the shape of blob-like structures, but is less effective for corner structures. It is simpler to compute than the second moment matrix, leading to a significant reduction in computational cost. A wide baseline dense correspondence extraction system, called WiDense, is presented in this thesis. It allows the extraction of large numbers of additional accurate correspondences, given only a few initial putative correspondences. It consists of the following algorithms: An affine region alignment algorithm that ensures accurate alignment between matched features; A method for extracting more matches in the vicinity of a matched pair of affine features, using the alignment information contained in the match; An algorithm for extracting large numbers of highly accurate point correspondences from an aligned pair of feature regions. Experiments show that the correspondences generated by the WiDense system improves the success rate of computing the epipolar geometry of very widely separated views. This new method is successful in many cases where the features produced by the best wide baseline matching algorithms are insufficient for computing the scene geometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robust, affine covariant, feature extractors provide a means to extract correspondences between images captured by widely separated cameras. Advances in wide baseline correspondence extraction require looking beyond the robust feature extraction and matching approach. This study examines new techniques of extracting correspondences that take advantage of information contained in affine feature matches. Methods of improving the accuracy of a set of putative matches, eliminating incorrect matches and extracting large numbers of additional correspondences are explored. It is assumed that knowledge of the camera geometry is not available and not immediately recoverable. The new techniques are evaluated by means of an epipolar geometry estimation task. It is shown that these methods enable the computation of camera geometry in many cases where existing feature extractors cannot produce sufficient numbers of accurate correspondences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Achieving a robust, accurately scaled pose estimate in long-range stereo presents significant challenges. For large scene depths, triangulation from a single stereo pair is inadequate and noisy. Additionally, vibration and flexible rigs in airborne applications mean accurate calibrations are often compromised. This paper presents a technique for accurately initializing a long-range stereo VO algorithm at large scene depth, with accurate scale, without explicitly computing structure from rigidly fixed camera pairs. By performing a monocular pose estimate over a window of frames from a single camera, followed by adding the secondary camera frames in a modified bundle adjustment, an accurate, metrically scaled pose estimate can be found. To achieve this the scale of the stereo pair is included in the optimization as an additional parameter. Results are presented both on simulated and field gathered data from a fixed-wing UAV flying at significant altitude, where the epipolar geometry is inaccurate due to structural deformation and triangulation from a single pair is insufficient. Comparisons are made with more conventional VO techniques where the scale is not explicitly optimized, and demonstrated over repeated trials to indicate robustness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel coarse-to-fine global localization approach inspired by object recognition and text retrieval techniques. Harris-Laplace interest points characterized by scale-invariant transformation feature descriptors are used as natural landmarks. They are indexed into two databases: a location vector space model (LVSM) and a location database. The localization process consists of two stages: coarse localization and fine localization. Coarse localization from the LVSM is fast, but not accurate enough, whereas localization from the location database using a voting algorithm is relatively slow, but more accurate. The integration of coarse and fine stages makes fast and reliable localization possible. If necessary, the localization result can be verified by epipolar geometry between the representative view in the database and the view to be localized. In addition, the localization system recovers the position of the camera by essential matrix decomposition. The localization system has been tested in indoor and outdoor environments. The results show that our approach is efficient and reliable. © 2006 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel coarse-to-fine global localization approach that is inspired by object recognition and text retrieval techniques. Harris-Laplace interest points characterized by SIFT descriptors are used as natural land-marks. These descriptors are indexed into two databases: an inverted index and a location database. The inverted index is built based on a visual vocabulary learned from the feature descriptors. In the location database, each location is directly represented by a set of scale invariant descriptors. The localization process consists of two stages: coarse localization and fine localization. Coarse localization from the inverted index is fast but not accurate enough; whereas localization from the location database using voting algorithm is relatively slow but more accurate. The combination of coarse and fine stages makes fast and reliable localization possible. In addition, if necessary, the localization result can be verified by epipolar geometry between the representative view in database and the view to be localized. Experimental results show that our approach is efficient and reliable. ©2005 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose a vision based mobile robot localization strategy. Local scale-invariant features are used as natural landmarks in unstructured and unmodified environment. The local characteristics of the features we use prove to be robust to occlusion and outliers. In addition, the invariance of the features to viewpoint change makes them suitable landmarks for mobile robot localization. Scale-invariant features detected in the first exploration are indexed into a location database. Indexing and voting allow efficient recognition of global localization. The localization result is verified by epipolar geometry between the representative view in database and the view to be localized, thus the probability of false localization will be decreased. The localization system can recover the pose of the camera mounted on the robot by essential matrix decomposition. Then the position of the robot can be computed easily. Both calibrated and un-calibrated cases are discussed and relative position estimation based on calibrated camera turns out to be the better choice. Experimental results show that our approach is effective and reliable in the case of illumination changes, similarity transformations and extraneous features. © 2004 IEEE.