31 resultados para Epileptogenesis
Resumo:
Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.
Resumo:
Epilepsy is one of the most common neurological disorders, a large fraction of which is resistant to pharmacotherapy. In this light, understanding the mechanisms of epilepsy and its intractable forms in particular could create new targets for pharmacotherapeutic intervention. The current project explores the dynamic changes in neuronal network function in the chronic temporal lobe epilepsy (TLE) in rat and human brain in vitro. I focused on the process of establishment of epilepsy (epileptogenesis) in the temporal lobe. Rhythmic behaviour of the hippocampal neuronal networks in healthy animals was explored using spontaneous oscillations in the gamma frequency band (SγO). The use of an improved brain slice preparation technique resulted in the natural occurence (in the absence of pharmacological stimulation) of rhythmic activity, which was then pharmacologically characterised and compared to other models of gamma oscillations (KA- and CCh-induced oscillations) using local field potential recording technique. The results showed that SγO differed from pharmacologically driven models, suggesting higher physiological relevance of SγO. Network activity was also explored in the medial entorhinal cortex (mEC), where spontaneous slow wave oscillations (SWO) were detected. To investigate the course of chronic TLE establishment, a refined Li-pilocarpine-based model of epilepsy (RISE) was developed. The model significantly reduced animal mortality and demonstrated reduced intensity, yet high morbidy with almost 70% mean success rate of developing spontaneous recurrent seizures. We used SγO to characterize changes in the hippocampal neuronal networks throughout the epileptogenesis. The results showed that the network remained largely intact, demonstrating the subtle nature of the RISE model. Despite this, a reduction in network activity was detected during the so-called latent (no seizure) period, which was hypothesized to occur due to network fragmentation and an abnormal function of kainate receptors (KAr). We therefore explored the function of KAr by challenging SγO with kainic acid (KA). The results demonstrated a remarkable decrease in KAr response during the latent period, suggesting KAr dysfunction or altered expression, which will be further investigated using a variety of electrophysiological and immunocytochemical methods. The entorhinal cortex, together with the hippocampus, is known to play an important role in the TLE. Considering this, we investigated neuronal network function of the mEC during epileptogenesis using SWO. The results demonstrated a striking difference in AMPAr function, with possible receptor upregulation or abnormal composition in the early development of epilepsy. Alterations in receptor function inevitably lead to changes in the network function, which may play an important role in the development of epilepsy. Preliminary investigations were made using slices of human brain tissue taken following surgery for intratctable epilepsy. Initial results showed that oscillogenesis could be induced in human brain slices and that such network activity was pharmacologically similar to that observed in rodent brain. Overall, our findings suggest that excitatory glutamatergic transmission is heavily involved in the process of epileptogenesis. Together with other types of receptors, KAr and AMPAr contribute to epilepsy establishment and may be the key to uncovering its mechanism.
Resumo:
Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.
Resumo:
Hippocampal sclerosis (HS) is considered the most frequent neuropathological finding in patients with mesial temporal lobe epilepsy (MTLE). Hippocampal specimens of pharmacoresistant MTLE patients that underwent epilepsy surgery for seizure control reveal the characteristic pattern of segmental neuronal cell loss and concomitant astrogliosis. However, classification issues of hippocampal lesion patterns have been a matter of intense debate. International consensus classification has only recently provided significant progress for comparisons of neurosurgical and clinic-pathological series between different centers. The respective four-tiered classification system of the International League Against Epilepsy subdivides HS into three types and includes a term of gliosis only, no-HS. Future studies will be necessary to investigate whether each of these subtypes of HS may be related to different etiological factors or with postoperative memory and seizure outcome. Molecular studies have provided potential deeper insights into the pathogenesis of HS and MTLE on the basis of epilepsy-surgical hippocampal specimens and corresponding animal models. These include channelopathies, activation of NMDA receptors, and other conditions related to Ca(2+) influx into neurons, the imbalance of Ca(2+)-binding proteins, acquired channelopathies that increase neuronal excitability, paraneoplastic and non-paraneoplastic inflammatory events, and epigenetic regulation promoting or facilitating hippocampal epileptogenesis. Genetic predisposition for HS is clearly suggested by the high incidence of family history in patients with HS, and by familial MTLE with HS. So far, it is clear that HS is multifactorial and there is no individual pathogenic factor either necessary or sufficient to generate this intriguing histopathological condition. The obvious variety of pathogenetic combinations underlying HS may explain the multitude of clinical presentations, different responses to clinical and surgical treatment. We believe that the stratification of neuropathological patterns can help to characterize specific clinic-pathological entities and predict the postsurgical seizure control in an improved fashion.
Resumo:
Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.
Resumo:
The gamma-aminobutyric acid type A (GABA(A)) receptor mediates fast inhibitory synaptic transmission in the CNS. Dysfunction of the GABA(A) receptor would be expected to cause neuronal hyperexcitability, a phenomenon linked with epileptogenesis. We have investigated the functional consequences of an arginine-to-glutamine mutation at position 43 within the GABA(A) gamma(2)-subunit found in a family with childhood absence epilepsy and febrile seizures. Rapid-application experiments performed on receptors expressed in HEK-293 cells demonstrated that the mutation slows GABA(A) receptor deactivation and increases the rate of desensitization, resulting in an accumulation of desensitized receptors during repeated, short applications. In Xenopus laevis oocytes, two-electrode voltage-clamp analysis of steady-state currents obtained from alpha(1)beta(2)gamma(2) or alpha(1)beta(2)gamma(2)(R43Q) receptors did not reveal any differences in GABA sensitivity. However, differences in the benzodiazepine pharmacology of mutant receptors were apparent. Mutant receptors expressed in oocytes displayed reduced sensitivity to diazepam and flunitrazepam but not the imiclazopyricline zolpidem. These results provide evidence of impaired GABA(A) receptor function that could decrease the efficacy of transmission at inhibitory synapses, possibly generating a hyperexcitable neuronal state in thalamocortical networks of epileptic patients possessing the mutant subunit.
Resumo:
Cell damage and spatial localization deficits are often reported as long-term consequences of pilocarpine-induced status epilepticus. In this study, we investigated the neuroprotective effects of repeated drug administration after long-lasting status epilepticus. Groups of six to eight Wistar rats received microinjections of pilocarpine (2.4 mg/mu l, 1 mu l) in the right dorsal hippocampus to induce a status epilepticus, which was attenuated by thiopental injection (35 mg/kg, i.p.) 3 hrs after onset. Treatments consisted of i.p. administration of diazepam, ketamine, carbamazepine, or phenytoin at 4, 28, 52, and 76 hr after the onset of status epilepticus. Two days after the treatments, rats were tested in the Morris water maze and 1 week after the cognitive tests, their brains were submitted to histology to perform haematoxylin and eosin staining and glial fibrillary acidic protein (GFAP) immunofluorescence detection. Post-status epilepticus rats exhibited extensive gliosis and cell loss in the hippocampal CA1, CA3 (70% cell loss for both areas) and dentate gyrus (60%). Administration of all drugs reduced cell loss in the hippocampus, with best effects observed in brains slices of diazepam-treated animals, which showed less than 30% of loss in the three areas and decreased GFAP immunolabelling. Treatments improved spatial navigation during training trials and probe trial, with exception of ketamine. Interestingly, in the probe trial, only diazepam-treated animals showed preference for the goal quadrant. Our data point to significant neuroprotective effects of repeated administration of diazepam against status epilepticus-induced cell damage and cognitive disturbances.
Resumo:
Vitamin D (VD), is a steroid hormone with multiple functions in the central nervous system (CNS), producing numerous physiological effects mediated by its receptor (VDR). Clinical and experimental studies have shown a link between VD dysfunction and epilepsy. Along these lines, the purpose of our work was to analyze the relative expression of VDR mRNA in the hippocampal formation of rats during the three periods of pilocarpine-induced epilepsy. Male Wistar rats were divided into five groups: (1) control group; rats that received saline 0.9%, i.p. and were killed 7 days after its administration (CTRL, n = 8), (2) SE group; rats that received pilocarpine and were killed 4 h after SE (SE, n = 8), (3) Silent group-7 days; rats that received pilocarpine and were killed 7 days after SE (SIL 7d, n = 8), (4) Silent group-14 days; rats that received pilocarpine and were killed 14 days after SE (SIL 14d, n = 8), (5) Chronic group; rats that received pilocarpine and were killed 60 days after the first spontaneous seizure, (chronic, n = 8). The relative expression of VDR mRNA was determined by real-time PCR. Our results showed an increase of the relative expression of VDR mRNA in the SIL 7 days, SIL 14 days and Chronic groups, respectively (0.060 +/- 0.024; 0.052 +/- 0.035; 0.085 +/- 0.055) when compared with the CTRL and SE groups (0.019 +/- 0.017; 0.019 +/- 0.025). These data suggest the VDR as a possible candidate participating in the epileptogenesis process of the pilocarpine model of epilepsy. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: To investigate pathophysiological factors underlying the presence of interictal hyper-perfusion within the limits of the polymicrogyric (PMG) cortex in epileptic patients. Methods: Retrospective observational study on interictal perfusion by Single Photon Emission Computed Tomography (SPECT) in 16 patients with PMG and its correlations with a number of clinical and neurophysiological variables. Patients underwent video-EEG monitoring, neurological and psychiatric assessments, invasive EEG, and the interictal SPECT coregistered to Magnetic Resonance Imaging (MRI). Results: Patients with interictal hyperperfusion within the PMG cortex had a significantly higher spike rate on interictal EEG than patients with normal perfusion. Interictal hyperperfusion was not correlated to sex, age at epilepsy onset, age at evaluation, number of seizures per month, presence of initial precipitating insult (IPI), abnormal neurological examination, EEG findings, ictal serniology, and seizure outcome. The high interictal spike rate did not correlate to a high frequency of seizures per month. Conclusions: Our work provides further evidences for an intrinsic epileptogenesis of the PMG cortex during the interictal state, which accounts for the major rote of PMG tissue in seizure generation. These results might help to increase our understanding about epileptogenesis related to the PMG cortex, providing new toots for more tailored epilepsy surgery in PMG patients. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Zinc is present in high concentration in many structures of the limbic circuitry, however the role of zinc as a neuromodulator in such synapses is stilt uncertain. In this work, we verified the effects of zinc chelation in an animal model of epileptogenesis induced by amygdala rapid kindling. The basolateral. amygdala was electrically stimulated ten times per day for 2 days. A single stimulus was applied on the third day. Stimulated animals received injections of PBS or the zinc chelator diethildythiocarbamate acid (DEDTC) before each stimulus series. Animals were monitored with video-EEG and were perfused 3 h after the last stimulus for subsequent neo-Timm and Ftuoro-Jade B analysis. Zinc chelation decreased the duration of both behavioral seizures and electrical after-discharges, and also decreased the EEG spikes frequency, without changing the progression of behavioral seizure severity. These results indicate that the zinc ion may have a facilitatory role during kindling progression. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Neuropeptide Y appears to modulate epileptic seizures differentially according to the receptor subtypes involved. In the hippocampus, neuropeptide Y expression and release are enhanced in different models of epileptogenesis. On the contrary, the expression of Y1 receptors is decreased and it has been shown that activation of these receptors has pro-convulsant effects. The aim of our study was to investigate the role of Y1 receptors during hippocampal kindling epileptogenesis using (i) knock-out mice lacking Y1 receptors and (ii) intrahippocampal infusion of Y1 antisense oligodeoxynucleotide in rats. Y1 knock-out mice showed similar susceptibility to seizure induction and presented no difference in kindling development as compared with their control littermates. Conversely, local hippocampal down-regulation of Y1 receptors during the first week of hippocampal kindling, induced by a local infusion of a Y1 antisense oligodeoxynucleotide, significantly increased seizure threshold intensity and decreased afterdischarge duration. A reverse effect was observed during the week following the infusion period, which was confirmed by a significant decrease in the number of hippocampal stimulations necessary to evoke generalized seizures. At the end of this second week, an up-regulation of Y1 receptors was observed in kindled rats infused with the antisense as compared with the mismatch-treated controls. Our results in the rat suggest that the down-regulation of Y1 receptors in the hippocampus participates in the control of the initiation of epileptogenesis. The lack of an effect of the deficiency of Y1 receptors in the control of kindling development in Y1 knock-out mice could be due to compensatory mechanisms.
Resumo:
Our inability to adequately treat many patients with refractory epilepsy caused by focal cortical dysplasia (FCD), surgical inaccessibility and failures are significant clinical drawbacks. The targeting of physiologic features of epileptogenesis in FCD and colocalizing functionality has enhanced completeness of surgical resection, the main determinant of outcome. Electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) and magnetoencephalography are helpful in guiding electrode implantation and surgical treatment, and high-frequency oscillations help defining the extent of the epileptogenic dysplasia. Ultra high-field MRI has a role in understanding the laminar organization of the cortex, and fluorodeoxyglucose-positron emission tomography (FDG-PET) is highly sensitive for detecting FCD in MRI-negative cases. Multimodal imaging is clinically valuable, either by improving the rate of postoperative seizure freedom or by reducing postoperative deficits. However, there is no level 1 evidence that it improves outcomes. Proof for a specific effect of antiepileptic drugs (AEDs) in FCD is lacking. Pathogenic mutations recently described in mammalian target of rapamycin (mTOR) genes in FCD have yielded important insights into novel treatment options with mTOR inhibitors, which might represent an example of personalized treatment of epilepsy based on the known mechanisms of disease. The ketogenic diet (KD) has been demonstrated to be particularly effective in children with epilepsy caused by structural abnormalities, especially FCD. It attenuates epigenetic chromatin modifications, a master regulator for gene expression and functional adaptation of the cell, thereby modifying disease progression. This could imply lasting benefit of dietary manipulation. Neurostimulation techniques have produced variable clinical outcomes in FCD. In widespread dysplasias, vagus nerve stimulation (VNS) has achieved responder rates >50%; however, the efficacy of noninvasive cranial nerve stimulation modalities such as transcutaneous VNS (tVNS) and noninvasive (nVNS) requires further study. Although review of current strategies underscores the serious shortcomings of treatment-resistant cases, initial evidence from novel approaches suggests that future success is possible.
Resumo:
Epileptic seizures are harmful to the developing brain. During epileptic seizures, overactivation of glutamate receptors (GluR) leads to neuronal degeneration, defined as excitotoxicity. The hippocampus is especially vulnerable to excitotoxic neuronal death, but its mechanism has remained incompletely known in the developing brain. Recently, signs of activation of inflammatory processes after epileptic seizures have been detected in the hippocampus. The purpose of this thesis was to study the inflammatory reaction and death mechanisms in excitoxic neurodegeneration induced by the glutamate analogue kainic acid (KA) in the developing hippocampus. Organotypic hippocampal slice cultures (OHCs), prepared from 6-7-day-old rats (P6-7) and treated with KA, served as an in vitro model. KA-induced status epilepticus in P9 and P21 rats was used as an in vivo model. The results showed that the pyramidal cell layers of the hippocampus were the most susceptible to irreversible and age-specific neurodegeneration, which occurred in the juvenile (P21), but not in the immature (P9), rat hippocampus. The primary death mechanism was necrosis as there were no significant changes in the expression of selected apoptosis markers and morphological cellular features of necrosis were found. Inflammatory response was similarly age-dependent after KA treatment as a rapid, fulminant and wide response was detected in the juvenile, but not in the immature, rat brain. An anti-inflammatory drug treatment, given before KA, was not neuroprotective in OHCs, possibly because of the timing of the treatment. In summary, the results suggest that KA induces an age-dependent inflammatory response and necrotic neurodegeneration, which may cause disturbances in hippocampal connectivity and promote epileptogenesis.
Resumo:
Intrahippocampal administration of kainic acid (KA) induces synaptic release of neurotrophins, mainly brain-derived neurotrophic factor, which contributes to the acute neuronal excitation produced by the toxin. Two protein tyrosine kinase inhibitors, herbimycin A and K252a, were administered intracerebroventricularly, in a single dose, to attenuate neurotrophin signaling during the acute effects of KA, and their role in epileptogenesis was evaluated in adult, male Wistar rats weighing 250-300 g. The latency for the first Racine stage V seizure was 90 ± 8 min in saline controls (N = 4) which increased to 369 ± 71 and 322 ± 63 min in animals receiving herbimycin A (1.74 nmol, N = 4) and K252a (10 pmol, N = 4), respectively. Behavioral alterations were accompanied by diminished duration of EEG paroxysms in herbimycin A- and K252a-treated animals. Notwithstanding the reduction in seizure severity, cell death (60-90% of cell loss in KA-treated animals) in limbic regions was unchanged by herbimycin A and K252a. However, aberrant mossy fiber sprouting was significantly reduced in the ipsilateral dorsal hippocampus of K252a-treated animals. In this model of temporal lobe epilepsy, both protein kinase inhibitors diminished the acute epileptic activity triggered by KA and the ensuing morphological alterations in the dentate gyrus without diminishing cell loss. Our current data indicating that K252a, but not herbimycin, has an influence over KA-induced mossy fiber sprouting further suggest that protein tyrosine kinase receptors are not the only factors which control this plasticity. Further experiments are necessary to elucidate the exact signaling systems associated with this K252a effect.
Resumo:
Les modèles kainate et pentylènetétrazole représentent deux modèles d’épilepsie du lobe temporal dont les conséquences à long terme sont différentes. Le premier est un modèle classique d’épileptogénèse avec crises récurrentes spontanées tandis que le second se limite aux crises aigües. Nous avons d’abord caractérisé les différents changements survenant dans les circuits excitateurs et inhibiteurs de l’hippocampe adulte de rats ayant subi des crises à l’âge immature. Ensuite, ayant observé dans le modèle fébrile une différence du pronostic lié au genre, nous avons voulu savoir si cette différence était aussi présente dans des modèles utilisant des neurotoxines. L’étude électrophysiologique a démontré que les rats KA et PTZ, mâles comme femelles, présentaient une hyperactivité des récepteurs NMDA au niveau des cellules pyramidales du CA1, CA3 et DG. Les modifications anatomiques sous-tendant cette hyperexcitabilité ont été étudiées et les résultats ont montré une perte sélective des interneurones GABAergiques contenant la parvalbumine dans les couches O/A du CA1 des mâles KA et PTZ. Chez les femelles, seul le DG était légèrement affecté pour les PTZ tandis que les KA présentaient, en plus du DG, des pertes importantes au niveau de la couche O/A. Les évaluations cognitives ont démontré que seuls les rats PTZ accusaient un déficit spatial puisque les rats KA présentaient un apprentissage comparable aux rats normaux. Cependant, encore une fois, cette différence n’était présente que chez les mâles. Ainsi, nos résultats confirment qu’il y a des différences liées au genre dans les conséquences des convulsions lorsqu’elles surviennent chez l’animal immature.