999 resultados para Enxame de Partículas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo desta dissertação é a determinação da máxima injeção nodal numa rede de energia elétrica, ou seja, qual o valor total máximo de potência ativa que é possível injetar e qual a sua distribuição pelos diversos nós da rede simultaneamente. Determinámos esta máxima injeção nodal em duas situações distintas: injeção não simultânea, injetando potência em um só nó de cada vez e injeção simultânea, injetando potência em todos os nós da rede simultaneamente. Sendo este um problema de natureza combinatória, utilizámos para esta determinação o algoritmo conhecido como nuvem ou enxame de partículas, adaptando-o ao nosso problema. Desenvolvemos o software na linguagem de programação Python utilizando o ambiente Eclipse. Para resolver o trânsito de energia utilizámos o programa PSSE University.Para os exemplos de aplicação utilizámos duas redes de energia elétrica, uma de 6 e outra de 14 barramentos. Estas redes foram baseadas nas redes IEEE 6 BUS e IEEE 14 BUS respetivamente. Concluímos que o algoritmo nuvem ou enxame de partículas cumpriu o objetivo traçado, obtendo as melhores soluções para cada um dos casos, máxima injeção nodal não simultânea e máxima injeção nodal simultânea. No contexto deste problema, o parâmetro chave do algoritmo, comprovado pelos ensaios feitos, é a velocidade máxima de deslocação das partículas, tomando valores típicos de 7 a 10 para a rede de 6 barramentos e de 20 a 25 para a de 14 barramentos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle Swarm Optimization is a metaheuristic that arose in order to simulate the behavior of a number of birds in flight, with its random movement locally, but globally determined. This technique has been widely used to address non-liner continuous problems and yet little explored in discrete problems. This paper presents the operation of this metaheuristic, and propose strategies for implementation of optimization discret problems as form of execution parallel as sequential. The computational experiments were performed to instances of the TSP, selected in the library TSPLIB contenct to 3038 nodes, showing the improvement of performance of parallel methods for their sequential versions, in executation time and results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durante o processo de extração do conhecimento em bases de dados, alguns problemas podem ser encontrados como por exemplo, a ausência de determinada instância de um atributo. A ocorrência de tal problemática pode causar efeitos danosos nos resultados finais do processo, pois afeta diretamente a qualidade dos dados a ser submetido a um algoritmo de aprendizado de máquina. Na literatura, diversas propostas são apresentadas a fim de contornar tal dano, dentre eles está a de imputação de dados, a qual estima um valor plausível para substituir o ausente. Seguindo essa área de solução para o problema de valores ausentes, diversos trabalhos foram analisados e algumas observações foram realizadas como, a pouca utilização de bases sintéticas que simulem os principais mecanismos de ausência de dados e uma recente tendência a utilização de algoritmos bio-inspirados como tratamento do problema. Com base nesse cenário, esta dissertação apresenta um método de imputação de dados baseado em otimização por enxame de partículas, pouco explorado na área, e o aplica para o tratamento de bases sinteticamente geradas, as quais consideram os principais mecanismos de ausência de dados, MAR, MCAR e NMAR. Os resultados obtidos ao comprar diferentes configurações do método à outros dois conhecidos na área (KNNImpute e SVMImpute) são promissores para sua utilização na área de tratamento de valores ausentes uma vez que alcançou os melhores valores na maioria dos experimentos realizados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research work, a new routing protocol for Opportunistic Networks is presented. The proposed protocol is called PSONET (PSO for Opportunistic Networks) since the proposal uses a hybrid system composed of a Particle Swarm Optimization algorithm (PSO). The main motivation for using the PSO is to take advantage of its search based on individuals and their learning adaptation. The PSONET uses the Particle Swarm Optimization technique to drive the network traffic through of a good subset of forwarders messages. The PSONET analyzes network communication conditions, detecting whether each node has sparse or dense connections and thus make better decisions about routing messages. The PSONET protocol is compared with the Epidemic and PROPHET protocols in three different scenarios of mobility: a mobility model based in activities, which simulates the everyday life of people in their work activities, leisure and rest; a mobility model based on a community of people, which simulates a group of people in their communities, which eventually will contact other people who may or may not be part of your community, to exchange information; and a random mobility pattern, which simulates a scenario divided into communities where people choose a destination at random, and based on the restriction map, move to this destination using the shortest path. The simulation results, obtained through The ONE simulator, show that in scenarios where the mobility model based on a community of people and also where the mobility model is random, the PSONET protocol achieves a higher messages delivery rate and a lower replication messages compared with the Epidemic and PROPHET protocols.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Trabalho Final de mestrado para obtenção do grau de Mestre em engenharia Mecância

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Utilizar robôs autônomos capazes de planejar o seu caminho é um desafio que atrai vários pesquisadores na área de navegação de robôs. Neste contexto, este trabalho tem como objetivo implementar um algoritmo PSO híbrido para o planejamento de caminhos em ambientes estáticos para veículos holonômicos e não holonômicos. O algoritmo proposto possui duas fases: a primeira utiliza o algoritmo A* para encontrar uma trajetória inicial viável que o algoritmo PSO otimiza na segunda fase. Por fim, uma fase de pós planejamento pode ser aplicada no caminho a fim de adaptá-lo às restrições cinemáticas do veículo não holonômico. O modelo Ackerman foi considerado para os experimentos. O ambiente de simulação de robótica CARMEN (Carnegie Mellon Robot Navigation Toolkit) foi utilizado para realização de todos os experimentos computacionais considerando cinco instâncias de mapas geradas artificialmente com obstáculos. O desempenho do algoritmo desenvolvido, A*PSO, foi comparado com os algoritmos A*, PSO convencional e A* Estado Híbrido. A análise dos resultados indicou que o algoritmo A*PSO híbrido desenvolvido superou em qualidade de solução o PSO convencional. Apesar de ter encontrado melhores soluções em 40% das instâncias quando comparado com o A*, o A*PSO apresentou trajetórias com menos pontos de guinada. Investigando os resultados obtidos para o modelo não holonômico, o A*PSO obteve caminhos maiores entretanto mais suaves e seguros.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho serão apresentados e discutidos vários aspectos relacionados com células de combustível, com particular enfoque na modelação de células de combustível de membrana de permuta protónica. Este trabalho está dividido em vários capítulos. No Capítunlo 1 são apresentadas as motivações e os objectivos da tese. No Capítulo 2 serão apresentadas as células de combustível em geral, a sua origem, os diversos tipos, o que as diferencia das restantes tecnologias de geração de energia e as suas vantagens e desvantagens. No Capítulo 3 discute-se a modelação de células de combustível. Serão expostos e explicados os diferentes tipos de modelos, seguindo-se uma apresentação do modelo selecionado para estudo, com referência aos fundamentos teóricos exposição detalhada da fórmulação matemática e os parâmetros que caracterizam o modelo. É também apresentado a implementação do modelo em Matlab/Simulink. No Capítulo 4 será discutida e apresentada a abordagem utilizada para a identificação dos parâmetros do modelo da célula de combustível. Propõe-se e prova-se que uma abordagem baseada num algoritmo de optimização inteligente proporciona um método eficaz e preciso para a identificação dos parâmetros. Esta abordagem requer a existência de alguns dados experimentais que são também apresentados. O algoritmo utilizado designa-se por Optimização por Enxame de Partículas – Particle Swarm Optimization (PSO). São apresentados os seus fundamentos, características, implementação em Matlab/Simulink e a estratégia de optimização, isto é, a configuração do algoritmo, a definição da função objectivo e limites de variação dos parâmetros. São apresentados os resultados do processo de optimização, resultados adicionais de validação do modelo, uma análise de robustez do conjunto óptimo de parâmetros e uma análise de sensibilidade dos mesmos. O trabalho termina apresentando, no último capítulo, algumas conclusões, das quais se destacam: - O bom desempenho do algoritmo PSO para a identificação dos parâmetros do modelo da célula de combsutível; - Uma robustez interessante do algoritmo PSO, no sentido em que, para várias execuções do método resultam valores do parâmetros e da função objectivo com variabilidade bastante reduzidas; - Um bom modelo da célula de combustível, que quando caracterizado pelo conjunto óptimo de parâmetros, apresenta, sistematicamente, erros relativos médios inferiores a 2,5% para um conjunto alargado de condições de funcionamento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Computação Evolutiva enquadra-se na área da Inteligência Artificial e é um ramo das ciências da computação que tem vindo a ser aplicado na resolução de problemas em diversas áreas da Engenharia. Este trabalho apresenta o estado da arte da Computação Evolutiva, assim como algumas das suas aplicações no ramo da eletrónica, denominada Eletrónica Evolutiva (ou Hardware Evolutivo), enfatizando a síntese de circuitos digitais combinatórios. Em primeiro lugar apresenta-se a Inteligência Artificial, passando à Computação Evolutiva, nas suas principais vertentes: os Algoritmos Evolutivos baseados no processo da evolução das espécies de Charles Darwin e a Inteligência dos Enxames baseada no comportamento coletivo de alguns animais. No que diz respeito aos Algoritmos Evolutivos, descrevem-se as estratégias evolutivas, a programação genética, a programação evolutiva e com maior ênfase, os Algoritmos Genéticos. Em relação à Inteligência dos Enxames, descreve-se a otimização por colônia de formigas e a otimização por enxame de partículas. Em simultâneo realizou-se também um estudo da Eletrónica Evolutiva, explicando sucintamente algumas das áreas de aplicação, entre elas: a robótica, as FPGA, o roteamento de placas de circuito impresso, a síntese de circuitos digitais e analógicos, as telecomunicações e os controladores. A título de concretizar o estudo efetuado, apresenta-se um caso de estudo da aplicação dos algoritmos genéticos na síntese de circuitos digitais combinatórios, com base na análise e comparação de três referências de autores distintos. Com este estudo foi possível comparar, não só os resultados obtidos por cada um dos autores, mas também a forma como os algoritmos genéticos foram implementados, nomeadamente no que diz respeito aos parâmetros, operadores genéticos utilizados, função de avaliação, implementação em hardware e tipo de codificação do circuito.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de Computadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bidimensional periodic structures called frequency selective surfaces have been well investigated because of their filtering properties. Similar to the filters that work at the traditional radiofrequency band, such structures can behave as band-stop or pass-band filters, depending on the elements of the array (patch or aperture, respectively) and can be used for a variety of applications, such as: radomes, dichroic reflectors, waveguide filters, artificial magnetic conductors, microwave absorbers etc. To provide high-performance filtering properties at microwave bands, electromagnetic engineers have investigated various types of periodic structures: reconfigurable frequency selective screens, multilayered selective filters, as well as periodic arrays printed on anisotropic dielectric substrates and composed by fractal elements. In general, there is no closed form solution directly from a given desired frequency response to a corresponding device; thus, the analysis of its scattering characteristics requires the application of rigorous full-wave techniques. Besides that, due to the computational complexity of using a full-wave simulator to evaluate the frequency selective surface scattering variables, many electromagnetic engineers still use trial-and-error process until to achieve a given design criterion. As this procedure is very laborious and human dependent, optimization techniques are required to design practical periodic structures with desired filter specifications. Some authors have been employed neural networks and natural optimization algorithms, such as the genetic algorithms and the particle swarm optimization for the frequency selective surface design and optimization. This work has as objective the accomplishment of a rigorous study about the electromagnetic behavior of the periodic structures, enabling the design of efficient devices applied to microwave band. For this, artificial neural networks are used together with natural optimization techniques, allowing the accurate and efficient investigation of various types of frequency selective surfaces, in a simple and fast manner, becoming a powerful tool for the design and optimization of such structures

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes design methodologies for frequency selective surfaces (FSSs) composed of periodic arrays of pre-fractals metallic patches on single-layer dielectrics (FR4, RT/duroid). Shapes presented by Sierpinski island and T fractal geometries are exploited to the simple design of efficient band-stop spatial filters with applications in the range of microwaves. Initial results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as, fractal iteration number (or fractal level), fractal iteration factor, and periodicity of FSS, depending on the used pre-fractal element (Sierpinski island or T fractal). The transmission properties of these proposed periodic arrays are investigated through simulations performed by Ansoft DesignerTM and Ansoft HFSSTM commercial softwares that run full-wave methods. To validate the employed methodology, FSS prototypes are selected for fabrication and measurement. The obtained results point to interesting features for FSS spatial filters: compactness, with high values of frequency compression factor; as well as stable frequency responses at oblique incidence of plane waves. This thesis also approaches, as it main focus, the application of an alternative electromagnetic (EM) optimization technique for analysis and synthesis of FSSs with fractal motifs. In application examples of this technique, Vicsek and Sierpinski pre-fractal elements are used in the optimal design of FSS structures. Based on computational intelligence tools, the proposed technique overcomes the high computational cost associated to the full-wave parametric analyzes. To this end, fast and accurate multilayer perceptron (MLP) neural network models are developed using different parameters as design input variables. These neural network models aim to calculate the cost function in the iterations of population-based search algorithms. Continuous genetic algorithm (GA), particle swarm optimization (PSO), and bees algorithm (BA) are used for FSSs optimization with specific resonant frequency and bandwidth. The performance of these algorithms is compared in terms of computational cost and numerical convergence. Consistent results can be verified by the excellent agreement obtained between simulations and measurements related to FSS prototypes built with a given fractal iteration

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este artigo apresenta uma breve revisão de alguns dos mais recentes métodos bioinspirados baseados no comportamento de populações para o desenvolvimento de técnicas de solução de problemas. As metaheurísticas tratadas aqui correspondem às estratégias de otimização por colônia de formigas, otimização por enxame de partículas, algoritmo shuffled frog-leaping, coleta de alimentos por bactérias e colônia de abelhas. Os princípios biológicos que motivaram o desenvolvimento de cada uma dessas estratégias, assim como seus respectivos algoritmos computacionais, são introduzidos. Duas aplicações diferentes foram conduzidas para exemplificar o desempenho de tais algoritmos. A finalidade é enfatizar perspectivas de aplicação destas abordagens em diferentes problemas da área de engenharia.