963 resultados para Environmental monitoring--South Carolina--Maps


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This map of South Carolina is divided into different districts showing coverage of solid waste monitoring. A contact person with telephone number and email address is provided for each district.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This CD contains summary data of bottlenose dolphins stranded in South Carolina using a Geographical Information System (GIS) and contains two published manuscripts in .pdf files. The intent of this CD is to provide data on bottlenose dolphin strandings in South Carolina to marine mammal researchers and managers. This CD is an accumulation of 14 years of stranding data collected through the collaborations of the National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research (CCEHBR), the South Carolina Department of Natural Resources, and numerous volunteers and veterinarians that comprised the South Carolina Marine Mammal Stranding Network. Spatial and temporal information can be visually represented on maps using GIS. For this CD, maps were created to show relationships of stranding densities with land use, human population density, human interaction with dolphins, high geographical regions of live strandings, and seasonal changes. Point maps were also created to show individual strandings within South Carolina. In summary, spatial analysis revealed higher densities of bottlenose dolphin strandings in Charleston and Beaufort Counties, which consist of urban land with agricultural input. This trend was positively correlated with higher human population levels in these coastal counties as compared with other coastal counties. However, spatial analysis revealed that certain areas within a county may have low human population levels but high stranding density, suggesting that the level of effort to respond to strandings is not necessarily positively correlated with the density of strandings in South Carolina. Temporal analysis revealed a significantly higher density of bottlenose dolphin strandings in the northern portion of the State in the fall, mostly due to an increase of neonate strandings. On a finer geographic scale, seasonal stranding densities may fluctuate depending on the region of interest. Charleston Harbor had the highest density of live bottlenose dolphin strandings compared to the rest of the State. This was due in large part to the number of live dolphin entanglements in the crab pot fishery, the largest source of fishery-related mortality for bottlenose dolphins in South Carolina (Burdett and McFee 2004). Spatial density calculations also revealed that Charleston and Beaufort accounted for the majority of dolphins that were involved with human activities. 1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used hyperspectral imaging to study short-term effects of bioturbation by lugworms (Arenicola marina) on the surficial biomass of microphytobenthos (MPB) in permeable marine sediments. Within days to weeks after the addition of a lugworm to a homogenized and recomposed sediment, the average surficial MPB biomass and its spatial heterogeneity were, respectively, 150 - 250% and 280% higher than in sediments without lugworms. The surficial sediment area impacted by a single medium-sized lugworm (~4 g wet weight) over this time-scale was at least 340 cm**2. While sediment reworking was the primary cause of the increased spatial heterogeneity, experiments with lugworm-mimics together with modeling showed that bioadvective porewater transport from depth to the sediment surface, as induced by the lugworm ventilating its burrow, was the main cause of the increased surficial MPB biomass. Although direct measurements of nutrient fluxes are lacking, our present data show that enhanced advective supply of nutrients from deeper sediment layers induced by faunal ventilation is an important mechanism that fuels high primary productivity at the surface of permeable sediments even though these systems are generally characterized by low standing stocks of nutrients and organic material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most people have come in contact with sources of carbon monoxide (CO). As a result, potential exposure to CO at harmful levels can pose a serious health risk. The objective of this report was to examine if knowledge of CO sources varied in South Carolina by region of the state. Many unintentional CO poisonings in the home are the result of lack of knowledge about potential sources of CO. Per the current study, the odds of incorrectly responding to household gas appliances being a source of CO were significantly different in adjusted analyses for region, marital status, ethnicity and age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately 768,500 triploid grass carp ( Ctenopharyngodon idella Valenciennes) were stocked into the Santee Cooper reservoirs, South Carolina between 1989 and 1996 to control hydrilla ( Hydrilla verticillata (L.f.) Royle). Hydrilla coverage was reduced from a high of 17,272 ha during 1994 to a few ha by 1998. During 1997, 1998 and 1999, at least 98 triploid grass carp were collected yearly for population monitoring. Estimates of age, growth, and mortality, as well as population models, were used in the study to monitor triploid grass carp and predict population trends. Condition declined from that measured during a previous study in 1994. The annual mortality rate was estimated at 28% in 1997, 32% in 1998 and 39% in 1999; however, only the 1999 mortality rate was significantly different. Few (2 out of 98) of the triploid grass carp collected during 1999 were older than age 9. We expect increased mortality due to an aging population and sparse hydrilla coverage. During 1999, we estimated about 63,000 triploid grass carp system wide and project less than 3,000 fish by 2004, assuming no future stocking. management, population size Ctenopharyngodon idella, Hydrilla

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South Carolina Coastal Information Network (SCCIN) emerged as a result of a number of coastal outreach institutions working in partnership to enhance coordination of the coastal community outreach efforts in South Carolina. This organized effort, led by the S.C. Sea Grant Consortium and its Extension Program, includes partners from federal and state agencies, regional government agencies, and private organizations seeking to coordinate and/or jointly deliver outreach programs that target coastal community constituents. The Network was officially formed in 2006 with the original intention of fostering intra-and inter- agency communication, coordination, and cooperation. Network partners include the S.C. Sea Grant Consortium, S.C. Department of Health and Environmental Control – Office of Ocean and Coastal Resource Management and Bureau of Water, S.C. Department of Natural Resources – ACE Basin National Estuarine Research Reserve, North Inlet-Winyah Bay National Estuarine Research Reserve, Clemson University Cooperative Extension Service and Carolina Clear, Berkeley-Charleston-Dorchester Council of Governments, Waccamaw Regional Council of Governments, Urban Land Institute of South Carolina, S.C. Department of Archives and History, the National Oceanic and Atmospheric Administration – Coastal Services Center and Hollings Marine Laboratory, Michaux Conservancy, Ashley-Cooper Stormwater Education Consortium, the Coastal Waccamaw Stormwater Education Consortium, the S.C. Chapter of the U.S. Green Building Council, and the Lowcountry Council of Governments. (PDF contains 3 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This publication is a booklet published by the Standard Oil Company that serves as a guide to the state of South Carolina, including history, geography, maps, and automobile care information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The computational program called GIS_EM (Geographic Information System for Environmental Monitoring), a software devised to manage geographic information for monitoring soil, surface, and ground water, developed for use in the Health, Safety, and Environment Division of Paulinia Refinery is presented. This program enables registering and management of alphanumeric information pertaining to specific themes such as drilling performed for sample collection and for installation of monitoring wells, geophysical and other tests, results of chemical analyses of soil, surface, and groundwater, as well as reference values providing orientation for soil and water quality, such as EPA, Dutch List, etc. Management of such themes is performed by means of alphanumeric search tools, with specific filters and, in the case of spatial search, through the selection of spatial elements (themes) in map view. Documents existing in digital form, such as reports, photos, maps, may be registered and managed in the network environment. As the system centralizes information generated upon environmental investigations, it expedites access to and search of documents produced and stored in the network environment, minimizing search time and the need to file printed documents. This is an abstract of a paper presented at the AIChE Annual Meeting and Fall Showcase (Cincinnati, OH 10/30/2005-11/4/2005).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental degradation from point and non-point source pollution in the past ten years has made it increasingly clear that threats to aquatic resources cannot adequately be addressed without a more integrated watershed approach to the management. Through comprehensive, qualitative interviews of experts in the watershed approach in South Carolina, recommendations will be made to improve this holistic process. Conducting interviews to compile institutional knowledge on the incentives and barriers from professionals working within the watershed approach will show how managing the natural resources in South Carolina could be more effective and efficient. By gathering experiences of lessons learned, best approach techniques, and suggestions for future watershed planning, several recommendations were made to further the use of the watershed approach in South Carolina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

by R. Cowley.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map: Map showing route of marches of the army of Genl. W.T. Sherman, from Atlanta, Ga. to Goldsboro, N.C. : to accompany the report of operations from Savannah, Ga. to Goldsboro, N.C., prepared by order of the Secretary of War for the officers of the U.S. Army under the command of Maj. Gen. W.T. Sherman. It was published by the Engineer Bureau, War Dept. in 1865. Scale [ca. 1:1,950,000]. Shows Sherman's March through the Carolinas covering South Carolina and portions of North Carolina, Georgia, and Tennessee. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator projection (WGS 1984 UTM Zone 17N). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, cities and towns, drainage, and more. Relief shown by hachures. The routes of the 14th, 15th, 17th, and 20th corps and the cavalry are indicated by colors and symbols. This layer is part of a selection of digitally scanned and georeferenced historic maps of the Civil War from the Harvard Map Collection. Many items from this selection are from a collection of maps deposited by the Military Order of the Loyal Legion of the United States Commandery of the State of Massachusetts (MOLLUS) in the Harvard Map Collection in 1938. These maps typically portray both natural and manmade features, in particular showing places of military importance. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map: Charleston Harbor and its approaches showing the positions of the Rebel-batteries, [by] U.S. Coast Survey. It was published in 1863 by Lith. of J. Bien. Scale 1:30,000. Nautical chart covering Charleston Harbor and a portion of Charleston, South Carolina. The image inside the map neatline is georeferenced to the surface of the earth and fit to the South Carolina State Plane Coordinate System (in Meters) (Fipszone 3900). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, houses, vegetation, drainage, military batteries and fortifications, coastal features (shoals, rocks, channels, floating batteries, etc.) and more. Overprinted to show 1/4-mile concentric circles centered on St. Michaels, Charleston; positions occupied by the Union Army and Navy; "Rebel batteries in possession of National forces [and] batteries still held by the Rebels [on] Sept. 7th 1863." Union positions are based "on the authority of Maj. T.B. Brooks." Relief shown by hachures; depths shown by soundings and shading. This layer is part of a selection of digitally scanned and georeferenced historic maps of the Civil War from the Harvard Map Collection. Many items from this selection are from a collection of maps deposited by the Military Order of the Loyal Legion of the United States Commandery of the State of Massachusetts (MOLLUS) in the Harvard Map Collection in 1938. These maps typically portray both natural and manmade features, in particular showing places of military importance. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.