987 resultados para Environmental contaminated matrices
Resumo:
There is a need to develop viable techniques for removal and recovery organic and inorganic compounds from environmental matrices, due to their ecotoxicity, regulatory obligations or potential supplies as secondary materials. In this dissertation, electro –removal and –recovery techniques were applied to five different contaminated environmental matrices aiming phosphorus (P) recovery and/or contaminants removal. In a first phase, the electrokinetic process (EK) was carried out in soils for (i) metalloids and (ii) organic contaminants (OCs) removal. In the case of As and Sb mine contaminated soil, the EK process was additionally coupled with phytotechnologies. In a second phase, the electrodialytic process (ED) was applied to wastes aiming P recovery and simultaneous removal of (iii) toxins from membrane concentrate, (iv) heavy metals from sewage sludge ash (SSA), and (v) OCs from sewage sludge (SS). EK enhanced phytoremediation showed to be viable for the remediation of soils contaminated with metalloids, as although remediation was low, it combines advantages of both technologies while allowing site management. EK also proved to be an effective remediation technology for the removal and degradation of emerging OCs from two types of soil. Aiming P recovery and contaminants removal, different ED cell set-ups were tested. For the membrane concentrates, the best P recovery was achieved in a three compartment (3c) cell, but the highest toxin removal was obtained in a two compartment (2c) cell, placing the matrix in the cathode end. In the case of SSA the best approach for simultaneous P recovery and heavy metals removal was to use a 2c-cell placing the matrix in the anode end. However, for simultaneous P recovery and OCs removal, SS should be placed in the cathode end, in a 2c-cell. Overall, the data support that the selection of the cell design should be done case-by-case.
Resumo:
Perfluoroalkylated substances are a group of chemicals that have been largely employed during the last 60 years in several applications, widely spreading and accumulating in the environment due to their extreme resistance to degradation. As a consequence, they have been found also in various types of food as well as in drinking water, proving that they can easily reach humans through the diet. The available information concerning their adverse effects on health has recently increased the interest towards these contaminants and highlighted the importance of investigating all the potential sources of human exposure, among which diet was proved to be the most relevant. This need has been underlined by the European Union through Recommendation 2010/161/EU: in this document, Member States were called to monitor their presence of in food, producing accurate estimations of human exposure. The purpose of the research presented in this thesis, which is the result of a partnership between an Italian and a French laboratory, was to develop reliable tools for the analysis of these pollutants in food, to be used for generating data on potentially contaminated matrices. An efficient method based on liquid chromatography-mass spectrometry for the detection of 16 different perfluorinated compounds in milk has been validated in accordance with current European regulation guidelines (2002/657/EC) and is currently under evaluation for ISO 17025 accreditation. The proposed technique was applied to cow, powder and human breast milk samples from Italy and France to produce a preliminary monitoring on the presence of these contaminants. In accordance with the above mentioned European Recommendation, this project led also to the development of a promising technique for the quantification of some precursors of these substances in fish. This method showed extremely satisfying performances in terms of linearity and limits of detection, and will be useful for future surveys.
Resumo:
The investigation of phylogenetic diversity and functionality of complex microbial communities in relation to changes in the environmental conditions represents a major challenge of microbial ecology research. Nowadays, particular attention is paid to microbial communities occurring at environmental sites contaminated by recalcitrant and toxic organic compounds. Extended research has evidenced that such communities evolve some metabolic abilities leading to the partial degradation or complete mineralization of the contaminants. Determination of such biodegradation potential can be the starting point for the development of cost effective biotechnological processes for the bioremediation of contaminated matrices. This work showed how metagenomics-based microbial ecology investigations supported the choice or the development of three different bioremediation strategies. First, PCR-DGGE and PCR-cloning approaches served the molecular characterization of microbial communities enriched through sequential development stages of an aerobic cometabolic process for the treatment of groundwater contaminated by chlorinated aliphatic hydrocarbons inside an immobilized-biomass packed bed bioreactor (PBR). In this case the analyses revealed homogeneous growth and structure of immobilized communities throughout the PBR and the occurrence of dominant microbial phylotypes of the genera Rhodococcus, Comamonas and Acidovorax, which probably drive the biodegradation process. The same molecular approaches were employed to characterize sludge microbial communities selected and enriched during the treatment of municipal wastewater coupled with the production of polyhydroxyalkanoates (PHA). Known PHA-accumulating microorganisms identified were affiliated with the genera Zooglea, Acidovorax and Hydrogenophaga. Finally, the molecular investigation concerned communities of polycyclic aromatic hydrocarbon (PAH) contaminated soil subjected to rhizoremediation with willow roots or fertilization-based treatments. The metabolic ability to biodegrade naphthalene, as a representative model for PAH, was assessed by means of stable isotope probing in combination with high-throughput sequencing analysis. The phylogenetic diversity of microbial populations able to derive carbon from naphthalene was evaluated as a function of the type of treatment.
Resumo:
Microcystins (MCs) comprise a family of more than 80 related cyclic hepatotoxic heptapeptides. Oxidation of MCs causes cleavage of the chemically unique C-20 beta-amino acid (2S, 3S, 8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda) amino to form 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB), which has been exploited to enable analysis of the entire family. In the present study, the reaction conditions (e.g. concentration of the reactants. temperature and pH) used in the production of MMPB by oxidation of cyanobacterial samples with permanganate-periodate were optimized through a series of well-controlled batch experiments. The oxidation product (MMPB) was then directly analyzed by high-performance liquid chromatography with diode array detection. The results of this study provided insight into the influence of reaction conditions on the yield of MMPB. Specifically, the optimal conditions, including a high dose of permanganate (>= 50 mM) in saturated periodate solution at ambient temperature under alkaline conditions (pH similar to 9) over 1-4 h were proposed, as indicated by a MMPB yield of greater than 85%. The technique developed here was applied to determine the total concentration of MCs in cyanobacterial bloom samples, and indicated that the MMPB technique was a highly sensitive and accurate method of quantifying total MCs. Additionally, these results will aid in development of a highly effective analytical method for detection of MMPB as an oxidation product for evaluation of total MCs in a wide range of environmental sample matrices, including natural waters, soils (sediments) and animal tissues. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Bioaccessibility studies have been widely used as a research tool to determine the potential human exposure to ingested contaminants. More recently they have been practically applied for soil borne toxic elements. This paper reviews the application of bioaccessibility tests across a range of organic pollutants and contaminated matrices. Important factors are reported to be: the physiological relevance of the test, the components in the gut media, the size fraction chosen for the test and whether it contains a sorptive sink. The bioaccessibility is also a function of the composition of the matrix (e.g. organic carbon content of soils) and the physico-chemical characteristics of the pollutant under test. Despite the widespread use of these tests, there are a large number of formats used and very few validation studies with animal models. We propose a unified format for a bioaccessibility test for organic pollutants. The robustness of this test should first be confirmed through inter laboratory comparison, then tested in-vivo.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
The concentration of arsenic (As) in rice grains has been identified as a risk to human health. The high proportion of inorganic species of As (As(i)) is of particular concern as it is a nonthreshold, class 1 human carcinogen. To be able to breed rice with low grain As, an understanding of genetic variation and the effect of different environments on genetic variation is needed. In this study, 13 cultivars grown at two field sites each in Bangladesh, India, and China are evaluated for grain As. There was a significant site, genotype, and site by genotype interaction for total grain As. Correlations were observed only between sites in Bangladesh and India, not between countries or within the Chinese sites. For seven cultivars the As was speciated which revealed significant effects of site, genotype, and site by genotype interaction for percentage As(i). Breeding low grain As cultivars that will have consistently low grain As and low As(i), over multiple environments using traditional breeding approaches may be difficult, although CT9993-5-10-1-M, Lemont, Azucena, and Te-qing in general had low grain As across the field sites.
Resumo:
Os fármacos são importantes contaminantes ambientais. Nas últimas duas décadas, o número de estudos sobre a ocorrência destes poluentes emergentes em matrizes ambientais aumentou significativamente. Esta ocorrência generalizada preocupa a comunidade científica devido a evidências que comprovam a sua capacidade de interferir nos ecossistemas, mesmo em concentrações muito baixas. No caso particular dos fármacos psiquiátricos é expectável que constituam um risco ecológico significativo. Para uma melhor compreensão do impacto real destes poluentes é essencial que se proceda a uma avaliação extensiva da sua persistência e destino em matrizes ambientais. Os estudos apresentados nesta tese pretendem contribuir para melhorar o conhecimento acerca da ocorrência, persistência e destino ambiental de fármacos psiquiátricos. Para este efeito, foram seleccionados, como objecto de estudo, dois grupos de fármacos: anti-epilépticos (carbamazepina) e fármacos com efeitos ansiolíticos e sedativos (as benzodiazepinas diazepam, oxazepam, lorazepam e alprazolam). A fotodegradação é o principal processo que afecta a persistência de poluentes orgânicos em ambientes aquáticos. Consequentemente, a persistência dos cinco fármacos seleccionados foi avaliada através de estudos de fotodegradação directa e indirecta, tendo em consideração a influência de parâmetros relevantes tais como pH, nível de oxigenação e matéria orgânica dissolvida. Os estudos de fotodegradação aqui descritos foram seguidos por cromatografia micelar electrocinética com a aplicação de um capilar com revestimento dinâmico. Adicionalmente, os fotoprodutos resultantes de fotodegradação directa foram identificados por espectrometria de massa. O estudo da carbamazepina no ambiente é particularmente relevante uma vez que esta foi proposta como um potencial marcador de poluição antropogénica. A sua ocorrência em água superficiais, de sub-solo e residuais foi investigada através da implementação de um ensaio imunológico (ELISA), optimizado para a aplicação a triagens ambientais e amostras com matrizes complexas. O destino deste fármaco na interface água/solo foi também investigado usando solos agrícolas submetidos a fertilizações de longo prazo; este estudo permitiu tirar conclusões acerca da contaminação de águas adjacentes por solos contaminados. O trabalho aqui descrito constitui uma abordagem multidisplinar à problemática da ocorrência de fármacos psiquiátricos no ambiente, contribuindo de forma relevante para esta área de estudo.
Resumo:
This work describes a methodology developed for performing the extraction, detection and quantification of Ra-228 in waters, suspended solids and sediments. The technique proved to be useful for analyzing samples from the hydrological environment of Morro do Ferro, Pocos de Caldas plateau, Brazil. The 228Ra activity in underground waters of 5 boreholes drilled in the area varied from 0.02 up to 14.5 Bq/l, whereas for the surficial waters the variation was from 0.04 to 0.51 Bq/l; for the suspended solids, the values ranged from 1.5 up to 419 Bq/g, whereas it was possible to find a value of 2.04 Bq/g for the sediments. These results show the applicability of the method for characterizing different matrices of environmental interest. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Immunochemical methods have increased considerably in the past years, and many examples of small and large scale studies have demonstrated the reliability of the immunotechniques for control and monitoring gf contaminant residues in different kinds of samples. Application of the immunoassay (IA) methods in pesticide residue control is an area with enormous potential for growth. The most extensively studied IA is the enzyme-linked absorbent assay (ELISA), but several other approaches, that include radioimmunoassay and immunoaffinity chromatography, have been also developed recently. In comparison with classical analytical methods, IA methods offer the possibility of highly sensitive, relatively vapid, and cost-effective measurements. This paper introduces the general IAs used until now, focusing on their use in pesticide analysis, and discussing briefly the effects of interferences from solvent residues or matrix components on the IA performance. Numerous immunochemical methods commonly used for pesticide determination in different samples such as food, crop and environmental samples are presented.
Resumo:
This paper presents a brief review about site investigation procedures for contaminated sites recommended by Brazilian and Canadian environmental agencies as well as discusses the theme of geo-environmental investigation as applied to Brazilian practice. The main definitions on the theme are reviewed and some guidelines are proposed for conducting a geo-environmental investigation of Brazilian contaminated sites using different site and laboratory investigation techniques based on the presented review and on the experience obtained from the investigation of a solid waste disposal site in the interior of the state of São Paulo, Brazil.
Resumo:
ABSTRACT One of the major ecological challenges on Lake Victoria resources is the existence of “hot spots”, caused by human waste, urban runoff, and industrial effluents. The lake is tending towards eutrophication which is attributed to the increasing human population in its watershed. A report of the levels of perfluorooctane sulfonate and perfluorooctanoic acid in environmental matrices of Lake Victoria is presented, and the management implication of perfluorinated compounds and similar potential organic pollutants examined. Two widely consumed and economically important fish species namely Lates niloticus (Nile perch) and Oreochromis niloticus (Nile tilapia) were obtained from Winam gulf of Lake Victoria, Kenya, and analysed for perfluorooctane sulfonate and perfluorooctanoic acid in muscles and liver using liquid chromatography coupled with mass spectroscopy. Variability in the concentrations of perfluorooctanoic acid or perfluorooctane sulfonate in river waters (range perfluorooctanoic acid 0.4 – 96.4 ng/L and perfluorooctane sulfonate < 0.4 – 13.2 ng/L) was higher than for Lake waters (range perfluorooctanoic acid 0.4 – 11.7 ng/L and perfluorooctane sulfonate < 0.4 – 2.5 ng/L respectively). Significant correlations were tested between perfluorinated compounds levels in sediments, fish and water. Wastewater treatment plants and other anthropogenic sources have been identified as significant sources or pathways for the introduction of perfluoroalkyl compounds into Lake Victoria ecosystem. In this study, elevated concentrations of perfluorooctanoic acid and perfluorooctane sulfonate was found in two wastewater treatment plants (WWTPs) in Kisumu, City of Kenya. An alternative analytical method to liquid chromatography/ mass spectroscopy for analysis of perfluorocarboxylic acids in abiotic and biotic matrices where high concentrations are expected is also presented. Derivatisation of the acid group to form a suitable alkyl ester provided a suitable compound for mass spectroscopy detection coupled to gas chromatography instrumental analysis. The acid is esterified by an alkyl halide i.e benzyl bromide as the alkylating agent for Perfluorocarboxylic acids quantification. The study also involved degradability measurements of emerging perfluorinated surfactants substitutes. The stability of the substitutes of perfluorinated surfactants was tested by employing advanced oxidation processes, followed by conventional tests, among them an automated method based on the manometric respirometry test and standardized fix bed bioreactor [FBBR] on perfluorobutane sulfonate (PFBS), a fluoroethylene polymer, fluorosurfactant (Zonyl), two fluoraliphaticesters (NOVEC ™ FC4430 and NOVEC ™ FC4432) and 10-(trifluoromethoxy) decane-sulfonate. Most of these emmerging surfactants are well-established in the market and have been used in several applications as alternatives to PFOS and PFOA based surfactants. The results of this study can be used as pioneer information for further studies on the sources, behaviour and fate of PFOA and PFOS and other related compounds in both abiotic and biota compartments of Lake Victoria and other lakes. Further an overview in degradation of emerging perfluorinated compounds substitutes is presented. Contribution in method development especially for acid group based fluorosurfactants is presented. The data obtained in this study can particularly be considered when formulating policies and management measures for preservation and sustainability of Lake Victoria resources.