1000 resultados para Environmental contaminant
Resumo:
The inadequate and indiscriminate disposal of sugarcane vinasse in soils and water bodies has received much attention since decades ago, due to environmental problems associated to this practice. Vinasse is the final by-product of the biomass distillation, mainly for the production of ethanol, from sugar crops (beet and sugarcane), starch crops (corn, wheat, rice, and cassava), or cellulosic material (harvesting crop residues, sugarcane bagasse, and wood). Because of the large quantities of vinasse produced, alternative treatments and uses have been developed, such as recycling of vinasse in fermentation, fertirrigation, concentration by evaporation, and yeast and energy production. This review was aimed at examining the available data on the subject as a contribution to update the information on sugarcane vinasse, from its characteristics and chemical composition to alternatives uses in Brazil: fertirrigation, concentration by evaporation, energy production; the effects on soil physical, chemical and biological properties; its influence on seed germination, its use as biostimulant and environmental contaminant. The low pH, electric conductivity, and chemical elements present in sugarcane vinasse may cause changes in the chemical and physical-chemical properties of soils, rivers, and lakes with frequent discharges over a long period of time, and also have adverse effects on agricultural soils and biota in general. Thus, new studies and green methods need to be developed aiming at sugarcane vinasse recycling and disposal. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Many pregnancy and birth cohort studies investigate the health effects of early-life environmental contaminant exposure. An overview of existing studies and their data is needed to improve collaboration, harmonization, and future project planning.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.
Resumo:
Ticks are obligate haematophagous ectoparasites of wild and domestic animals as well as humans, considered to be second worldwide to mosquitoes as vectors of human diseases. Tick-borne diseases are responsible worldwide for great economic losses in terms of mortality and morbidity of livestock animals. This review concerns to the different tick and tick-parasites control methods having a major focus on vaccines. Control of tick infestations has been mainly based on the use of acaricides, a control measure with serious drawbacks, as responsible for the contamination of milk and meat products, as a selective factor for acaricide-resistant ticks and as an environmental contaminant. Research on alternatives to the use of acaricides is strongly represented by tick vaccines considered a more cost-effective and environmentally safe strategy. Vaccines based on the Bm86 tick antigen were used in the first commercially available cattle tick vaccines and showed good results in reducing tick numbers, affecting weight and reproductive performance of female ticks which resulted in reduction of cattle tick populations over time and consequently lower reduction of the pathogen agents they carry.
Resumo:
Stable isotope fractionation analysis of contaminants is a promising method for assessing biodegradation of contaminants in natural systems. However, standard procedures to determine stable isotope fractionation factors, so far, neglect the influence of pollutant bioavailability on stable isotope fractionation. On a microscale, bioavailability may vary due to the spatio-temporal variability of local contaminant concentrations, limited effective diffusivities of the contaminants and cell densities, and thus, the pollutant supply might not meet the intrinsic degradation capacity of the microorganisms. The aim of this study was to demonstrate the effect of bioavailability on the apparent stable isotope fractionation, using a multiphase laboratory setup. The data gained show that the apparent isotope fractionation factors observed during biodegradation processes depend on the amount of biomass and/or the rate of toluene mass transfer from a second to the aqueous phase. They indicate that physico-chemical processes need to be taken into account when stable isotope fractionation analysis is used for the quantification of environmental contaminant degradation.
Resumo:
Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50 ppm HQ (1 h/day for 5 days). One hour later, oxidative burst, cell cycle. DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1 h later the last exposures, inflammation was induced by LPS inhalation (0.1 mg/ml/10 min) and 3 h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of beta(2) and beta(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ exposure, which may be considered in host defense in infectious diseases. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Urban particulate matter (UPM) contributes to lung cancer incidence. Here, we have studied the mutagenic activity and DNA adduct-forming ability of fractionated UPM extractable organic matter (EOM). UPM was collected with a high-volume sampler in June 2004 at two sites, one at street level adjacent to a roadway and the other inside a park within the urban area of the city of Sao Paulo, Brazil. UPM was extracted using dichloromethane, and the resulting EOM was separated by HPLC to obtain PAH, nitro-PAH, and oxy-PAH fractions which were tested for mutagenicity with the Salmonella strains TA98 and YG1041 with and without S9 metabolic activation. The PAH fraction from both sites showed negligible mutagenic activity in both strains. The highest mutagenic activity was found for the nitro-PAH fraction using YG1041 without metabolic activation; however, results were comparable for both sites. The nitro-PAH and oxy-PAH fractions were incubated with calf thymus DNA under reductive conditions appropriate for the activation of nitro aromatic compounds, then DNA adduct patterns and levels were determined with thin-layer chromatography (TLC) (32)p-postlabeling method using two enrichment procedures-nuclease PI digestion and butanol extraction. Reductively activated fractions from both sites produced diagonal radioactive zones (DRZ) of putative aromatic DNA adducts on thin layer plates with both enrichment procedures. No such DRZ were observed in control experiments using fractions from unexposed filters or from incubations without activating system. Total adduct levels produced by the nitro-PAH fractions were similar for both sites ranging from 30 to 45 adducts per 10(8) normal nucleotides. In contrast, the DNA binding of reductively activated oxy-PAH fractions was three times higher and the adduct pattern consisted of multiple discrete spots along the diagonal line on the thin layer plates. However, DNA adduct levels were not significantly different between the sampling sites. Both samples presented the same levels of mutagenic activity. The response in the Salmonella assay was typical of nitroaromatics. Although, more mutagenic activity was related to the nitro-PAH fraction in the Salmonella assay, the oxy-PAH fractions showed the highest DNA adduct levels. More studies are needed to elucidate the nature of the genotoxicants occurring in Sao Paulo atmospheric samples. (C) 2008 Elsevier B.V. All rights reserved.
Análise da toxicidade no açude Riacho da Cachoeira, Lajes Pintadas (RN): um desafio interdisciplinar
Resumo:
Contamination by complex mixtures of various origins has been explored and studied for decades. Radon is a naturally occurring environmental contaminant that causes carcinogenic effects. These emissions can cause mutations in the lung tissue, which can initiate a carcinogenic process. Thus the dam Creek Falls, located in the municipality of Lajes Pintadas, was chosen for the development of this study, since cancer rates in the region reach 9% of the population annually, with this, the main objective of this study was evaluate the mutagenicity and toxicity of Riacho da Cachoeira damunder the influence of radon. The methodology ecotoxicological tests were performed with Ceriodaphinia dubia, as well as tests with Tradescantia pallida genotoxicologicos and Oreochromis niloticus. To understand how the population of Pintadas Slabs realizes the environment, we performed a study of environmental perception. The test results indicated that the reservoir water is toxic to test organimos exposed, found heavy metals, chloride, total and fecal coliforms as well as radon levels above the maximum allowed under Brazilian law. These results can be justified because it is so complex samples composed of different compounds that interact only with each other or causing synergistic effects. It was concluded that the dam Creek Waterfall, is contaminated with radon, as well as heavy metals, coliforms and chloride, causing toxic effects to the natural community. Thus, further studies should be performed with the human population of the region, to verify that the high rates of cancer in the population of the municipality may be linked to the presence of natural radiation. Thus, it is expected that the competent bodies that administer the municipality of Lajes Pintadas take reasonable steps to minimize risks and ensure the health of the community that still makes use of the weir
Resumo:
Phosphorus (P) is an essential element in crop nutrition, which can be growth limiting or an environmental contaminant, if present in excess. Tillage practices have a direct effect on the behavior and availability of soil P. Sorption and availability of various P forms were evaluated in an incubation-fractionation study of three soils, a Typic Paleudults (CR soil) and two Cerrado Oxisols (Latossolo Vermelho-Amarelo [LVA] and Latossolo Vermelho [LV]) with distinct biogeochemical characteristics and tillage management history. Phosphate and myo-inositol hexakisphosphate (mIPH) were strongly sorbed by the soils. Maximum adsorption capacities (S(max)) were 2.2-6.9, 3.3-7.8, and 1.6-19.8 mmol kg(-1) for phosphate in the 0-40 cm depths of the CR, LV, and LVA soils, respectively. For mIPH, S. were 1.2-3.7, 3.7-5.5, and 4.6-5.2 mmol kg(-1). Saturation indices reflected the long-term effect of repeated manure applications on the Paleudults and the near saturation of its P holding capacity, in contrast to the recently cultivated Cerrado soils. Tillage method appeared to have altered P retention characteristics of the near-surface zone very slightly, while increases in ligand-exchangeable (EEP;) and enzyme-labile organic P (EDTA-PHP) forms were observed in no-till Oxisols. In the Paleudults, added manure P increased bioactive P fractions and P saturation of no-till near-surface soil zone. Estimates of all bioactive P fractions using the ligand-based enzymatic assay showed it to be an effective method for assessing P availability in soil and developing sustainable P management strategies, particularly in Cerrado Oxisols that were low in organic matter while having an extensive P-fixing capacity. Published by Elsevier B.V.
Resumo:
Petroleum and derivatives have been considered one of the main environmental contaminants. Among petroleum derivatives, the volatile organic compounds benzene, toluene, ethylbenzene and xylene (BTEX) represent a major concern due to their toxicity and easy accumulation in groundwater. Biodegradation methods seem to be suitable tools for the clean-up of BTEX contaminants from groundwater. Genotoxic and mutagenic potential of BTEX prior and after biodegradation process was evaluated through analyses of chromosomal aberrations and MN test in meristematic and F 1 root cells using the Allium cepa test system. Seeds of A. cepa were germinated into five concentrations of BTEX, non-biodegraded and biodegraded, in ultra-pure water (negative control), in MMS 4×10 -4M (positive control) and in culture medium used in the biodegradation (blank biodegradation control). Results showed a significant frequency of both chromosomal and nuclear aberrations. The micronucleus (MN) frequency in meristematic cells was significant for most of tested samples. However, MN was not present in significant levels in the F 1 cells, suggesting that there was no permanent damage for the meristematic cell. The BTEX effects were significantly reduced in the biodegraded samples when compared to the respective non-biodegraded concentrations. Therefore, in this study, the biodegradation process showed to be a reliable and effective alternative to treat BTEX-contaminated waters. Based on our results and available data, the BTEX toxicity could also be related to a synergistic effect of its compounds. © 2011 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Induction of cytochrome P4501A1 (CYP1A1) in the hepatoma Hepa1c1c7 cell line results in an elevation in the excretion rate of 8-oxoguanine (oxo8Gua), a biomarker of oxidative DNA damage and the major repair product of 8-oxo-2'-deoxyguanosine (oxo8dG) residues in DNA. Treatment of this cell line with 2,3,7,8-tetrachloro-p-dibenzodioxin (TCDD), a nonmetabolized environmental contaminant, and indolo(3,2-b)carbazole (ICZ), a metabolite of a natural pesticide found in cruciferous vegetables, is shown to both induce CYP1A1 activity and elevate the excretion rate of oxo8Gua; 7,8-benzoflavone (7,8-BF or alpha-naphthoflavone), an inhibitor of CYP1A1 activity and an antagonist of the aryl hydrocarbon (Ah) receptor, reduced the excretion rate of oxo8Gua. The essential role of Ah-receptor, which mediates the induction of CYP1A1, is shown by the inability of TCDD to induce CYP1A1 and to increase excretion of oxo8Gua in Ah receptor-defective c4 mutant cells. While there was a significant 7.0-fold increase over 2 days in the excretion rate of oxo8Gua into the growth medium of TCDD-treated Hepa1c1c7 cells compared to control, no significant increase was detected in the steady-state level of oxo8dG in the DNA presumably due to efficient DNA repair. Thus, the induction of CYP1A1 appears to lead to a leak of oxygen radicals and consequent oxidative DNA damage that could lead to mutation and cancer.