982 resultados para Environmental Restoration
Resumo:
The Richmond Mine of the Iron Mountain copper deposit contains some of the most acid mine waters ever reported. Values of pH have been measured as low as −3.6, combined metal concentrations as high as 200 g/liter, and sulfate concentrations as high as 760 g/liter. Copious quantities of soluble metal sulfate salts such as melanterite, chalcanthite, coquimbite, rhomboclase, voltaite, copiapite, and halotrichite have been identified, and some of these are forming from negative-pH mine waters. Geochemical calculations show that, under a mine-plugging remediation scenario, these salts would dissolve and the resultant 600,000-m3 mine pool would have a pH of 1 or less and contain several grams of dissolved metals per liter, much like the current portal effluent water. In the absence of plugging or other at-source control, current weathering rates indicate that the portal effluent will continue for approximately 3,000 years. Other remedial actions have greatly reduced metal loads into downstream drainages and the Sacramento River, primarily by capturing the major acidic discharges and routing them to a lime neutralization plant. Incorporation of geochemical modeling and mineralogical expertise into the decision-making process for remediation can save time, save money, and reduce the likelihood of deleterious consequences.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: H.A.S.C. no. 100-95.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"May 30, 1995"--Letter of transmittal.
Resumo:
Mode of access: Internet.
Resumo:
The Rodman Reservoir, an impoundment on the Ocklawaha River in north central Florida, is a last remnant of the Cross-Florida Barge Canal (CFBC). The canal, conceived in the 1820's, was designed by the U.S. Army Corps of Engineers (USACE) to shorten shipping lanes between the Fulf ports and the Atlantic coast. Opposition to CFBC by Florida's young environmental movement led to a half in construction of the CFBC in 1971, but decommissioning of the already-constructed Rodman dam and the reservoir behind it has been mired in controversy every since.
Resumo:
Aquatic Ecosystems perform numerous valuable environmental functions. They recycle nutrients, purify water, recharge ground water, augment and maintain stream flow, and provide habitat for a wide variety of flora and fauna and recreation for people. A rapid population increase accompanied by unplanned developmental works has led to the pollution of surface waters due to residential, agricultural, commercial and industrial wastes/effluents and decline in the number of water bodies. Increased demands for drainage of wetlands have been accommodated by channelisation, resulting in further loss of stream habitat, which has led to aquatic organisms becoming extinct or imperiled in increasing numbers and to the impairment of many beneficial uses of water, including drinking, swimming and fishing. Various anthropogenic activities have altered the physical, chemical and biological processes within aquatic ecosystems. An integrated and accelerated effort toward environmental restoration and preservation is needed to stop further degradation of these fragile ecosystems. Failure to restore these ecosystems will result in sharply increased environmental costs later, in the extinction of species or ecosystem types, and in permanent ecological damage.
Resumo:
Environmental fragility models are important decision tools for policy makers as they help quantify environmental sensitivity and understand the relationship between human activities and environmental quality. The objective of this study was to evaluate three different environmental fragility models within the Brazilian rainforest region and to use the results to develop environmental zone classes. Two rural river basins located in Ibiuna, Sao Paulo state, Brazil, were studied. Input variables, including slope class, relief dissection rate, soil class, lithology, land cover, and climate data, were used to compute environmental fragility classes using three standard models. The model outputs were evaluated on their ability to accurately predict the most sensitive and least sensitive areas. The best models for each region were used to derive environmental zoning maps, including restoration priorities, best regions for agriculture, and areas with high needs for soil management. These maps will help support land use strategies for environmental restoration. This study provides insight into territorial ordering and management of environmental services with a regional perspective.
Resumo:
UPM is a leader on landslide assessment and environmental restoration, as well as in waste management. The study of climate change and degraded land requires innovative techniques in teaching that will be analyzed and discussed in the following paper.
Resumo:
This dissertation examines the sociological process of conflict resolution and consensus building in South Florida Everglades Ecosystem Restoration through what I define as a Network Management Coordinative Interstitial Group (NetMIG). The process of conflict resolution can be summarized as the participation of interested and affected parties (stakeholders) in a forum of negotiation. I study the case of the Governor's Commission for a Sustainable South Florida (GCSSF) that was established to reduce social conflict. Such conflict originated from environmental disputes about the Everglades and was manifested in the form of gridlock among regulatory (government) agencies, Indian tribes, as well as agricultural, environmental conservationist and urban development interests. The purpose of the participatory forum is to reduce conflicts of interest and to achieve consensus, with the ultimate goal of restoration of the original Everglades ecosystem, while cultivating the economic and cultural bases of the communities in the area. Further, the forum aim to formulate consensus through envisioning a common sustainable community by providing means to achieve a balance between human and natural systems. ^ Data were gathered using participant observation and document analysis techniques to conduct a theoretically based analysis of the role of the Network Management Coordinative Interstitial Group (NetMIG). I use conflict resolution theory, environmental conflict theory, stakeholder analysis, systems theory, differentiation and social change theory, and strategic management and planning theory. ^ The purpose of this study is to substantiate the role of the Governor's Commission for a Sustainable South Florida (GCSSF) as a consortium of organizations in an effort to resolve conflict rather than an ethnographic study of this organization. Environmental restoration of the Everglades is a vehicle for recognizing the significance of a Network Management Coordinative Interstitial Group (NetMIG), namely the Governor's Commission for a Sustainable South Florida (GCSSF), as a structural mechanism for stakeholder participation in the process of social conflict resolution through the creation of new cultural paradigms for a sustainable community. ^
Resumo:
Lake Okeechobee, Florida, located in the middle of the larger Kissimmee River-Lake Okeechobee-Everglades ecosystem in South Florida, serves a variety of ecosystem and water management functions including fish and wildlife habitat, flood control, water supply, and source water for environmental restoration. As a result, the ecological status of Lake Okeechobee plays a significant role in defining the overall success of the greater Everglades ecosystem restoration initiative. One of the major ecological indicators of Lake Okeechobee condition focuses on the near-shore and littoral zone regions as characterized by the distribution and abundance of submerged aquatic vegetation (SAV) and giant bulrush (Scirpus californicus(C.A. Mey.) Steud.). The objective of this study is to present a stoplight restoration report card communication system, common to all 11 indicators noted in this special journal issue, as a means to convey the status of SAV and bulrush in Lake Okeechobee. The report card could be used by managers, policy makers, scientists and the public to effectively evaluate and distill information about the ecological status in South Florida. Our assessment of the areal distribution of SAV in Lake Okeechobee is based on a combination of empirical SAV monitoring and output from a SAV habitat suitability model. Bulrush status in the lake is related to a suitability index linked to adult survival and seedling establishment metrics. Overall, presentation of these performance metrics in a stoplight format enables an evaluation of how the status of two major components of Lake Okeechobee relates to the South Florida restoration program, and how the status of the lake influences restoration efforts in South Florida.
Resumo:
Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active nearstream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close proximity to the stream have mid-dense forest cover and moderate health can be obtained with 60% cover.
Resumo:
Extracellular polysaccharides are as structurally and functionally diverse as the bacteria that synthesise them. They can be present in many forms, including cell-bound capsular polysaccharides, unbound "slime", and as O-antigen component of lipopolysaccharide, with an equally wide range of biological functions. These include resistance to desiccation, protection against nonspecific and specific host immunity, and adherence. Unsurprisingly then, much effort has been made to catalogue the enormous structural complexity of the extracellular polysaccharides made possible by the wide assortment of available monosaccharide combinations, non-carbohydrate residues, and linkage types, and to elucidate their biosynthesis and export. In addition, the work is driven by the commercial potential of these microbial substances in food, pharmaceutics and biomedical industries. Most recently, bacteria-mediated environmental restoration and bioleaching have been attracting much attention owing to their potential to remediate environmental effluents produced by the mining and metallurgy industries. In spite of technological advances in chemistry, molecular biology and imaging techniques that allowed for considerable expansion of knowledge pertaining to the bacterial surface polysaccharides, current understanding of the mechanisms of synthesis and regulation of extracellular polysaccharides is yet to fully explain their structural intricacy and functional variability.