904 resultados para Environment Interaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the north-west of Mexico (CIANO) and sites across Australia during 3 seasons. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. Previously, we have evaluated both the performance of genotypes across environments and the genotype x environment interaction (G x E). The objective of this study was to interpret the G x E for yield in terms of crop attributes measured at individual sites and to identify the potential environmental drivers of this interaction. Groups of SBWs with consistent yield performance were identified, often comprising closely related lines. However, contrasting performance was also relatively common among sister lines or between a recurrent parent and its SBWs. Early flowering was a common feature among lines with broad adaptation and/or high yield in the northern Australian wheatbelt, while yields in the southern region did not show any association with the maturity type. Lines with high yields in the southern and northern regions had cooler canopies during flowering and early grain filling. Among the SBWs with Australian genetic backgrounds, lines best adapted to CIANO were tall (>100 cm), with a slightly higher ground cover. These lines also displayed a higher concentration of water-soluble carbohydrates in the stem at flowering, which was negatively correlated with stem number per unit area when evaluated in southern Australia (Horsham). Possible reasons for these patterns are discussed. Selection for yield at CIANO did not specifically identify the lines best adapted to northern Australia, although they were not the most poorly adapted either. In addition, groups of lines with specific adaptation to the south would not have been selected by choosing the highest yielding lines at CIANO. These findings suggest that selection at CIMMYT for Australian environments may be improved by either trait based selection or yield data combined with trait information. Flowering date, canopy temperature around flowering, tiller density, and water-soluble carbohydrate concentration in the stem at flowering seem likely candidates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil-plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg(-1) and 50 mg kg(-1) of each element. Soil-plant transfer coefficients ranged between 0.12-19.10 (Cs) and 1.48-146.10 (Sr) for lettuce and 0.09-13.24 (Cs) and 2.99-93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P less than or equal to 0.05) differences between soil-plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60% of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil-plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil-plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80% of total data variance, and were the best predictors for soil-plant transfer. The different varieties of lettuce and radish gave different responses in soil-plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30% of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil-plant transfer of Cs and Sr in one soil could have an increased soil-plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant-excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many modern cities locate in the mountainous areas, like Hong Kong, Phoenix City and Los Angles. It is confirmed in the literature that the mountain wind system developed by differential heating or cooling can be very beneficial in ventilating the city nearby and alleviating the UHI effect. However, the direct interaction of mountain wind with the natural-convection circulation due to heated urban surfaces has not been studied, to our best knowledge. This kind of unique interaction of two kinds of airflow structures under calm and neutral atmospheric environment is investigated in this paper by CFD approach. A physical model comprising a simple mountain and three long building blocks (forming two street canyons) is firstly developed. Different airflow structures are identified within the conditions of different mountain-building height ratios (R=Hm/Hb) by varying building height but fixing mountain height. It is found that the higher ventilation rate in the street canyons is expected in the cases of smaller mountain-building ratios, indicating the stronger natural convection due to increasing heated building surfaces. However, there is the highest air change rate (ACH) in the lowest-building-height case and most of the air is advective into the street canyon through the top open area, highlighting the important role played by the mountain wind. In terms of the ventilation efficiency, it is shown that the smallest R case enjoys the best air change efficiency followed by the highest R case, while the worst ventilative street canyons occur at the middle R case. In the end, a gap across the streets is introduced in the modeling. The existence of the gap can greatly channel the mountain wind and distribute the air into streets nearby. Thus the ACH can be doubled and air quality can be significantly improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty two open-pollinated Hevea progenies from different parental clones of the Asian origin were tested at five sites in the Northwestern São Paulo State Brazil to investigate the progeny girth growth, rubber yield, bark thickness and plant height. Except for the rubber yield, the analysis of variance indicated highly significant (p<0.01) genotype x environment interaction and heterogeneity of regressions among the progenies. However, the regression stability analysis identified only a few interacting progenies which had regression coefficients significantly different from the expected value of one. The linear regressions of the progeny mean performance at each test on an environmental index (mean of all the progenies in each test) showed the general stability and adaptability of most selected Hevea progenies over the test environments. The few progenies which were responsive and high yielding on different test sites could be used to maximize the rubber cultivars productivity and to obtain the best use of the genetically improved stock under different environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective was to determine whether there is a genotype x environment interaction for age at first calving (AFC) in Holstein cattle in Brazil and Colombia. Data included 51,239 and 25,569 first-lactation records from Brazil and Colombia, respectively. Of 4230 sires in the data, 530 were North American sires used in both countries. Analyses were done using the REML bi-trait animal model, and AFC was considered as a distinct characteristic in each country. Fixed effects of contemporary group (herd-calving year), sire genetic group, and cow genetic group, and random effects of animal and residual variation were included in the model. Average AFC in Brazil and Colombia were 29.5 ± 4.0 and 32.1 ± 3.5 mo, respectively. Additive and residual genetic components and heritability coefficient for AFC in Brazil were 2.21 mo 2, 9.41 mo 2, and 0.19, respectively, whereas for Colombia, they were 1.02 mo 2, 6.84 mo 2, and 0.13, respectively. The genetic correlation of AFC between Brazil and Colombia was 0.78, indicating differences in ranking of sires consistent with a genotype x environment interaction. Therefore, in countries with differing environments, progeny of Holstein sires may calve at relatively younger or older ages compared with contemporary herdmates in one environment versus another.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Descriptive herd variables (DVHE) were used to explain genotype by environment interactions (G x E) for milk yield (MY) in Brazilian and Colombian production environments and to develop a herd-cluster model to estimate covariance components and genetic parameters for each herd environment group. Data consisted of 180,522 lactation records of 94,558 Holstein cows from 937 Brazilian and 400 Colombian herds. Herds in both countries were jointly grouped in thirds according to 8 DVHE: production level, phenotypic variability, age at first calving, calving interval, percentage of imported semen, lactation length, and herd size. For each DVHE, REML bivariate animal model analyses were used to estimate genetic correlations for MY between upper and lower thirds of the data. Based on estimates of genetic correlations, weights were assigned to each DVHE to group herds in a cluster analysis using the FASTCLUS procedure in SAS. Three clusters were defined, and genetic and residual variance components were heterogeneous among herd clusters. Estimates of heritability in clusters 1 and 3 were 0.28 and 0.29, respectively, but the estimate was larger (0.39) in Cluster 2. The genetic correlations of MY from different clusters ranged from 0.89 to 0.97. The herd-cluster model based on DVHE properly takes into account G x E by grouping similar environments accordingly and seems to be an alternative to simply considering country borders to distinguish between environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine whether there is a genotype by environment interaction (GxE) for dairy buffaloes in Brazil and Colombia. The (co)variance components were estimated by using a bi-trait repeatability animal model with the REML method. Each trait consisted in the milk yield obtained in both countries. Contemporary group (herd, year and season of parity) and age at parity (linear and quadratic covariate) fixed effects, along with the additive genetic, permanent environment, and the residual random effects were included in the model. Genetic, permanent environmental and residual variance and heritabilities were different for both countries. The genetic correlations for milk yield between Brazil and Colombia were low (between 0.10 and 0.13), indicating a GxE interaction between both countries. Knowing that this interaction influences the genetic progress of buffalo populations in Brazil and Colombia, we recommend choosing sires tested in the country they will be used, along with conducting joint genetic evaluations that consider GxE interaction effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of genotype by environment interaction (GEI) on the weight of Tabapuã cattle at 240 (W240), 365 (W365) and 450 (W450) days of age. In total, 35,732 records of 8,458 Tabapuã animalswhich were born in the state of Bahia, Brazil, from 1975 to 2001, from 167 sires and 3,707 dams, were used. Two birth seasons were tested as for the environment effect: the dry (D) and rainy (R) ones. The covariance components were obtainedby a multiple-trait analysis using Bayesian inference, in which each trait was considered as being different in each season. Covariance components were estimated by software gibbs2f90. As for W240, the model was comprised of contemporary groups and cow age (in classes) as fixed effects; animal and maternal genetic additive, maternal permanent environmental and residual were considered as random effects. Concerning W365 and W450, the model included only the contemporary aged cow groups as fixed effects and the genetic additive and residual effects of the animal as the random ones. The GEI was assessed considering the genetic correlation, in which values below 0.80 indicated the presence of GEI. Regarding W365 and W450, the GEI was found in both seasons. As for post-weaning weight (W240), the effect of such interaction was not observed. ©2012 Sociedade Brasileira de Zootecnia.