19 resultados para Entomopathogen
Resumo:
The influence of temperature on life history traits of four Acyrthosiphon pisum clones was investigated, together with their resistance to one genotype of the fungal entomopathogen Erynia neoaphidis . There was no difference among aphid clones in development rate, but they did differ in fecundity. Both development rate and fecundity were influenced by temperature, but all clones showed similar responses to the changes in temperature (i.e. the interaction term was nonsignificant). However, there were significant differences among clones in susceptibility to the pathogen, and this was influenced by temperature. Furthermore, the clones differed in how temperature influenced susceptibility, with susceptibility rankings changing with temperature. Two clones showed changes in susceptibility which mirrored changes in the in vitro vegetative growth rate of E. neoaphidis at different temperatures, whereas two other clones differed considerably from this expected response. Such interactions between genotype and temperature may help maintain heritable variation in aphid susceptibility to fungal pathogen attack and have implications for our understanding of disease dynamics in natural populations. This study also highlights the difficulties of drawing conclusions about the efficacy of a biological control agent when only a restricted range of pest genotypes or environmental conditions are considered.
Resumo:
Greyback canegrubs cost the Australian sugarcane industry around $13 million per annum in damage and control. A novel and cost effective biocontrol bacterium could play an important role in the integrated pest management program currently in place to reduce damage and control associated costs. During the course of this project, terminal restriction fragment length polymorphism (TRFLP), 16-S rDNA cloning, suppressive subtractive hybridisation (SSH) and entomopathogen-specific PCR screening were used to investigate the little studied canegrub-associated microflora in an attempt to discover novel pathogens from putatively-diseased specimens. Microflora associated with these soil-dwelling insects was found to be both highly diverse and divergent between individual specimens. Dominant members detected in live specimens were predominantly from taxa of known insect symbionts while dominant sequences amplified from dead grubs were homologous to putativelysaprophytic bacteria and bacteria able to grow during refrigeration. A number of entomopathogenic bacteria were identified such as Photorhabdus luminescens and Pseudomonas fluorescens. Dead canegrubs prior to decomposition need to be analysed if these bacteria are to be isolated. Novel strategies to enrich putative pathogen-associated sequences (SSH and PCR screening) were shown to be promising approaches for pathogen discovery and the investigation of canegrubsassociated microflora. However, due to inter- and intra-grub-associated community diversity, dead grub decomposition and PCR-specific methodological limitations (PCR bias, primer specificity, BLAST database restrictions, 16-S gene copy number and heterogeneity), recommendations have been made to improve the efficiency of such techniques. Improved specimen collection procedures and utilisation of emerging high-throughput sequencing technologies may be required to examine these complex communities in more detail. This is the first study to perform a whole-grub analysis and comparison of greyback canegrub-associated microbial communities. This work also describes the development of a novel V3-PCR based SSH technique. This was the first SSH technique to use V3-PCR products as a starting material and specifically compare bacterial species present in a complex community.
Resumo:
The ability to resist or avoid natural enemy attack is a critically important insect life history trait, yet little is understood of how these traits may be affected by temperature. This study investigated how different genotypes of the pea aphid Acyrthosiphon pisum Harris, a pest of leguminous crops, varied in resistance to three different natural enemies (a fungal pathogen, two species of parasitoid wasp and a coccinellid beetle), and whether expression of resistance was influenced by temperature. Substantial clonal variation in resistance to the three natural enemies was found. Temperature influenced the number of aphids succumbing to the fungal pathogen Erynia neoaphidis Remaudiere & Hermebert, with resistance increasing at higher temperatures (18 vs. 28degreesC). A temperature difference of 5degreesC (18 vs. 23degreesC) did not affect the ability of A. pisum to resist attack by the parasitoids Aphidius ervi Haliday and A. eadyi Stary Gonzalez & Hall. Escape behaviour from foraging coccinellid beetles (Hippodamia convergens Guerin-Meneville) was not directly influenced by aphid clone or temperature (16 vs. 21degreesC). However, there were significant interactions between clone and temperature (while most clones did not respond to temperature, one was less likely to escape at 16degreesC), and between aphid clone and ladybird presence (some clones showed greater changes in escape behaviour in response to the presence of foraging coccinellids than others). Therefore, while larger temperature differences may alter interactions between Acyrthosiphon pisum and an entomopathogen, there is little evidence to suggest that smaller changes in temperature will alter pea aphid-natural enemy interactions.
Resumo:
Two bioassays were performed to evaluate the effect of two biopesticides based on Beauveria bassiana (Bals.) Vuillemin and Metarhizium anisopliae (Metsch.) Sorokin on the biological parameters of Trichogramma atopovirilia Oatman & Platner, 1983. In the first one, displays with S. frugiperda, 1797 eggs were dropped into the biopesticide suspension and offered to the parasitoid females for 24 hours. In the second one, parasitoid females were fed with a suspension containing honey and biopesticide suspension. In both cases, after the parasitoid death they were mantained into a humid chamber to observe fungus sporulation. The experiments were maintained in a climatized chamber at 25 +/- 1 degrees C, RH 70 +/- 10%, and photophase of 14 hours. The longevity and adult mortality, total parasitism, progeny emergency, number of individuals per egg and sexual ratio were analyzed. The biopesticides did not affect the evaluated parameters and no fungus sporulation was observed in dead females. It is possible to assert that the entomopathogenic fungi B. bassiana and M. anisopliae can be used with T. atopovirilia in IPM S. frugiperda systems.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sitophilus zeamais (Mots.) (Coleoptera: Curculionidae) is considered a major pest of maize, responsible for reducing grain quality and making the corn inappropriate for industrial use and human consumption. S. zeamais has been controlled exclusively with chemical products. The objective of this research was to select isolates of Beauveria bassiana (Bals.) Vuill. to control S. zeamais. Beetles were immersed in conidia suspensions of each isolate for five seconds and placed in a gerbox container with maize grains. In pathogenicity tests, the isolates that caused the highest mortality to the maize weevil were ESALQ-447 (68.0%), CCA-UFES/ Bb-36 (57.3%) and CCA-UFES/Bb-31 (51.3%). ESALQ-447 was the most virulent, with an LC50 of 1.7 × 107 conidia/ml and shows promise for controlling maize weevils. These isolates of B. bassiana can be used as effective substitutes for conventional chemical control, normally carried out with phosphine. Further tests should be performed under field and semi-field conditions to develop an appropriate strategy for the use of this entomopathogen to manage S. zeamais.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
The interactions between the entomopathogenic fungus Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae McIntoch (Hymenoptera: Braconidae) were evaluated under laboratory conditions. Nymphs of Myzus persicae Sulzer (Hemiptera: Aphididae) were first exposed to parasitoid females for 24 h and then 0, 24, and 48 h afterwards sprayed with a solution of B. bassiana. Likewise, aphids were also sprayed with B. bassiana and then exposed to parasitoids at 0, 24, and 48 h afterwards. Parasitism rate varied from 13 to 66.5%, and were signi_cantly lower in treatments where the two agents were exposed within a 0-24 h time interval compared with the control (without B. bassiana). Parasitoid emergence was negatively affected in treatments with B. bassiana spraying and subsequent exposure to D. rapae. Decreases in longevity of adult females of the D. rapae F1 generation were observed in treatments with B. bassiana spraying. The application of these two biological control agents can be used in combination on the control of M. persicae, wherein this use requires effective time management to avoid antagonistic interactions.
Resumo:
The effect of Bacillus thuringiensis Berliner 1911 var aizawai strain GC-91 (Bta) on the biological parameters and phytophagy of Podisus nigrispinus (Dallas 1851) (Hemiptera: Pentatomidae) were evaluated using the follow treatments: a) provision of deionized water and prey Plutella xylostella (Linnaeus 1758) (Lepidoptera: Plutellidae); b) provision of only a solution containing Bta; and c) provision of prey and the solution containing Bta. To evaluate the phytophagy of the predator, leaves of Brassica oleraceae var acephala Linnaeus cv Manteiga da Georgia were provided and replaced every two days, and subsequently stained by immersion in 1% acid fuchsin. Staining enabled the visualization of the feeding sheath, which allowed for the quantification of punctures inflicted by P nigrispinus. The phytophagy, reproductive capacity and biological cycle in P nigrispinus were negatively affected by the presence of Bta; however, its predatory capacity was not altered.
Resumo:
Products based on botanical insecticides and entomopathogenic fungi have been widely used in organic farming, especially in southern Brazil. Thus, this study investigated, in vitro, the effect of aqueous extracts and commercial formulations of plants with insecticidal activity on Beauveria bassiana. The treatments comprised the botanical insecticides Neempro (azadiractin +3-tigloylazadirachtol), at the concentrations of 0.25, 0.5, 0.75, and 1.0% (v/v), and DalNeem (neem oil emulsifiable), at 0.5, 1.0, 1.5, and 2.0% (v/v) (both commercial formulations of Azadirachta indica (neem)), and the aqueous extracts, at the concentrations of 2.5, 5.0, 7.5, and 10.0% (w/v), of neem seeds, tobacco powder (Nicotiana tabacum), and catigua leaves (Trichilia clausenii). In potato, dextrose, and agar culture medium, the effects of each product on the mycelial growth and the production and viability of conidia of B. bassiana were estimated. According to the adopted compatibility index, the aqueous extracts of neem seeds and leaves catigua, depending on the concentration used, and the botanical insecticide Neempro, were classified as compatible with the entomopathogen, becoming important alternatives to integrate programmes of integrated pest management, especially in organic farming systems.