5 resultados para Entodiniomorphida
Resumo:
The Entodiniomorphida are a diverse and morphologically complex group of ciliates which are symbiotic within the digestive tracts of herbivorous mammals. Previous phylogenies of the group have exclusively considered members of one family, the Ophryoscolecidae, which are symbiotic within ruminants. We sought to improve understanding of evolution within the entodiniomorphs by expanding the range of ciliates examined to include the Cycloposthiidae and Macropodimidae (symbionts of equids and macropodids respectively). The entire SSU-rRNA gene was sequenced for 3 species, Cycloposthium edentatum, Macropodinium ennuensis and M. yalanbense, and aligned against 14 litostome species and 2 postciliodesmatophoran outgroup species. Cycloposthium was consistently grouped as the sister-taxon to the Ophryoscolecidae although support for this relationship was low. This suggests that there is more evolutionary distance between the Cycloposthiidae and Ophryoscolecidae than previously inferred from studies of gross morphology, cell ontogeny or ultrastructure. In contrast, Macropodinium did not group with any of the entodiniomorphs, instead forming the sister group to the entire Trichostomatia (Entodiniomorphida + Vestibuliferida). This early diverging position for the macropodiniids is concordant with their morphology and ontogeny which failed to group the family with any of the entodiniomorph suborders. The currently accepted classification of the Trichostomatia is thus deficient and in need of review.
Resumo:
Trophozoites of Troglocorys cava were detected in all but one of the wild chimpanzee populations from Rubondo Island (Tanzania), with a prevalence ranging between 20% and 78%. However, the ciliate was absent in all captive groups. Prevalence appeared to increase with the number of sequential samples taken from a particular individual and reached 95.5% in wild individuals sampled at least 4 times.
Resumo:
Samples of Macropodinium spp. were collected from 3 new macropodid species: from 21 of 28 (75%) black-striped wallabies (Macropus dorsalis); 10 of 11 (91%) swamp wallabies (Wallabia bicolor); and 22 of 43 (51%) Tasmanian pademelons (Thylogale billardierii). The examination of ciliate morphology by silver impregnation and scanning electron microscopy led to the redescription of the genus Macropodinium and the description of 4 new species: Ma. tricresta sp. nov. and Ma. spinosus sp. nov. from M. dorsalis; Ma. maira sp. nov. from T. billardierii; and M. bicolor sp. nov. from W. bicolor; each species was strictly host specific. Cellular orientation was reinterpreted on the basis of vestibular morphology and it is concluded that Macropodinium spp. are laterally rather than dorso-ventrally compressed. The striated groove is thus dorso-ventral rather than lateral. Oral ciliation consisted of up to three bands: an adoral band composed of oblique kineties; a vestibular band of longitudinal kineties; and a preoral band of longitudinal kineties. Somatic ciliation occurred in two longitudinal bands: a dense band composed of several parallel kineties on the left side of the dorso-ventral groove; and a sparse band composed of a single kinety on the right internal side of the dorso-ventral groove. Few structures were homologous to those of other litostome ciliates, and thus the relationship of Macropodinium to other litostomes cannot yet be clearly defined.
Resumo:
Stomatogenesis and the cell division cycle was investigated for Macropodinium yalanbense Dehority, 1996 from Macropus giganteus using light and electron microscopy. Macropodinium spp. are endosymbiotic ciliates found only in the stomachs of macropodid marsupials. Stomatogenesis proceeds through 4 stages: initial formation of a transverse division suture; formation of the preoral field and formation of vestibular kineties in an internal pouch; extension of vestibulum posteriorly and external formation of new adoral kineties; and extension of somatic and adoral kineties accompanying dorsal and ventral constriction of the cell. Karyokinesis and formation of the new cytoproct occur immediately prior to cytokinesis. Comparison with other litostome ciliates shows that the formation of new vestibular kineties is most similar to that of the entodiniomorphs, formation of adoral kineties is most similar to that of the haptorians and formation of the somatic kineties to that of the vestibuliferans. The phylogenetic affinities of Macropodinium are thus difficult to infer from the ontogeny of organelle systems. Stomatogenesis of the adoral kineties is either epiapokinetal or a new type of cryptotelokinetal whereas the vestibular kineties are formed by either endoapokinetal or cryptotelokinetal processes. No other ciliate has been observed to utilise 2 types of stomatogenesis in its division cycle.
Resumo:
The ultrastructural features of Macropodinium moiri were investigated. The somatic cortex is composed of two lateral non-ciliated zones covered with trapezoidal plates and separated by a trough-like dorsoventral groove (DVG) which divides the cell into left and right halves. The somatic kineties occupy the margins of the DVG and are composed of monokinetids whose infraciliature shows a typical litostome pattern. The pellicular plates are lamellate, and separated by V-shaped grooves which are lined by thick-walled vacuoles. The DVG cortex is composed of electron-opaque U-shaped ribs which alternate with electron-lucent saccular structures. The DVG surface is composed of small regular pellicular sacs built up to form the ridges of the dorsal DVG. The vestibulum forms a laterally compressed cone with left/right differentiation. The basal section of its non-ciliated right side is internally lined (outer to innermost) by longitudinal fibres, nematodesmata and transverse microtubular ribbons. The left side bears the vestibular kineties and in its basal section is lined (outer to innermost) by small nematodesmata and transverse tubules. Cytoplasmic organelles include endoplasmic reticulum, starch granules and a single contactile vacuole surrounded by patches of nephridioplasm. Hydrogenosomes are absent and coccoid Gram-positive bacteria lie under the ciliated portions of the cell. This set of characteristics differs significantly from those of the all other trichostomes; Macropodiniidae is therefore designated Trichostomatia incertae sedis. A revised familial diagnosis of the Macropodiniidae is proposed.