962 resultados para Engorged Pollen
Resumo:
Increased rates of nitrogen fertilizer application lead to increased spikelet sterility. A field experiment was conducted to investigate the effects on engorged pollen production and spikelet sterility, of nitrogen and assimilate availability during microspore development, in two rice cultivars (Doongara and Amaroo) grown under two different water depths. Despite the temperature not being low enough during microspore development to cause spikelet sterility, the number of engorged pollen grains was lower in cv. Doongara than in cv. Amaroo. Nitrogen application decreased the number of engorged pollen grains per anther through increased spikelet density. Nitrogen application increased spikelet sterility as a result of increased panicle density showing pronounced indirect effect of N on spikelet sterility. Engorged pollen number was also closely related (r = -0.636*) to the nitrogen content of the leaf blade, indicating a direct negative effect of plant N status on engorged pollen production. The results suggest that the intrinsic pollen producing ability is the key element in the difference in cold tolerance between the two cultivars, particularly under high N rates. Opening the canopy for increased solar radiation interception by the treated plants increased the level of engorged pollen, indicating the importance of immediate assimilate availability for engorged pollen production. Shading reduced crop growth rate, but did not effect engorged pollen production. There was no effect of variation in assimilates production on spikelet sterility.
Resumo:
Low temperature during panicle development in rice increases spikelet sterility. This effect is exacerbated by high rates of nitrogen (N) application in the field. Spikelet sterility induced by low temperature and N fertilisation was examined in glasshouse experiments to clarify the mechanisms involved. In two glasshouse experiments, 12-h periods of low (18/13degreesC) and high (28/23degreesC) day/night temperatures were imposed over periods of 5-7 days during panicle development, to determine the effects of low temperature and N fertilisation on spikelet sterility. In one experiment, 50% sunlight was imposed together with low temperature to investigate the additive effects of reduced solar radiation and low temperature. The effect of increased tillering due to N fertilisation was examined by a tiller removal treatment in the same experiment. Pollen grain number and spikelet sterility were recorded at heading and harvest, respectively. Although there was no significant effect of low temperature on spikelet sterility in the absence of applied N, low temperature greatly increased spikelet sterility as a result of a reduction in the number of engorged pollen grains per anther in the presence of applied N. Spikelet sterility was strongly correlated with the number of engorged pollen grains per anther. Low temperature during very early ( late stage of spikelet differentiation-pollen mother cell stage) and peak ( second meiotic division stage-early stage of extine formation) microspore development caused a severe reduction in engorged pollen production mainly as a result of reduced total pollen production. Unlike low temperature, the effect of shading was rather small. The increased tillering due to application of high rates of N, increased both spikelet number per plant and spikelet sterility under low temperature conditions. The removal of tillers as they appeared reduced the number of total spikelets per plant and maintained a large number of engorged pollen grains per anther which, in turn, reduced spikelet sterility. The number of engorged pollen grains per anther determined the numbers of intercepted and germinated pollen grains on the stigma. It is concluded that N increased tillering and spikelet number per plant and this, in turn, reduced the number of engorged pollen grains per anther, leading into increased spikelet sterility under low temperature condition.
Resumo:
Low temperatures impose restrictions on rice (Oryza sativa L.) production at high latitudes. This study is related to low temperature damage that can arise mid-season during the panicle development phase. The objective of this study was to determine whether low temperature experienced by the root, panicle, or foliage is responsible for increased spikelet sterility. In temperature-controlled glasshouse experiments, water depth, and water and air temperatures, were changed independently to investigate the effects of low temperature in the root, panicle, and foliage during microspore development on spikelet sterility. The total number of pollen and number of engorged pollen grains per anther, and the number of intercepted and germinated pollen grains per stigma, were measured. Spikelet sterility was then analysed in relation to the total number of pollen grains per spikelet and the efficiency with which these pollen grains became engorged, were intercepted by the stigma, germinated, and were involved in fertilisation. There was a significant combined effect of average minimum panicle and root temperatures on spikelet sterility that accounted for 86% of the variation in spikelet sterility. Total number of pollen grains per anther was reduced by low panicle temperature, but not by low root temperature. Whereas engorgement efficiency ( the percentage of pollen grains that were engorged) was determined by both root and panicle temperature, germination efficiency (the percentage of germinated pollen grains relative to the number of engorged pollen grains intercepted by the stigma) was determined only by root temperature. Interception efficiency (i.e. percentage of engorged pollen grains intercepted by the stigma), however, was not affected by either root or panicle temperature. Engorgement efficiency was the dominant factor explaining the variation in spikelet sterility. It is concluded that both panicle and root temperature affect spikelet sterility in rice when the plant encounters low temperatures during the microspore development stage.
Resumo:
Increased grain yield in response to high rates of application of nitrogen (N) fertiliser is often limited by increased spikelet sterility, particularly under low temperature conditions in the New South Wales ( NSW) rice industry. In 3 field experiments, different N rates were applied for different sowing dates to investigate the interaction between N rate and temperature during microspore development on spikelet sterility and grain yield. In one experiment the effect of water depth on spikelet sterility was also investigated. Engorged pollen production, spikelet sterility, and yield and its components were recorded. Application of N affected a few different processes that lead into spikelet sterility. Application of N at both pre-flood (PF) and panicle initiation ( PI) significantly reduced the number of engorged pollen grains per anther, which was negatively correlated with spikelet sterility. Application of N and low temperature during microspore development with the absence of deep water also decreased pollen engorgement efficiency ( the percentage of pollen grains that were engorged). Application of N further increased spikelet density, which, in turn, increased both spikelet sterility and grain yield. The combined effect of spikelet density and low temperature during microspore development explained the 44% of variation in the number of engorged pollen grains per anther. Grain yield was decreased by low temperature during microspore development in the shallow water when N was applied. Spikelet sterility as a result of late sowing was strongly correlated with minimum temperature during flowering. It is concluded that N application reduced pollen number per anther as a result of increased spikelet density, and this made the spikelets more susceptible to low temperature, causing increased spikelet sterility.
Resumo:
Rice (Oryza sativa L.) plants are susceptible to low temperature during the young microspore stage, which occurs 10-12 days before heading. Low temperature at this time increases spikelet sterility which can cause massive yield loss. Increasing the cold tolerance of cultivars can reduce yield variability in temperate rice-growing environments. Two experiments were conducted in cold air screenings and two were conducted in cold water screenings to examine genotypic variation for cold tolerance, explore flowering traits related to spikelet sterility, and investigate whether the results reflect the level of cold tolerance determined previously in the field. Cold air screenings imposed day/night temperatures of 27 degrees C/13 degrees C, 25 degrees C/15 degrees C and 32 degrees C/25 degrees C following particle initiation until 50% heading, while cold water screenings maintained a relatively constant 19 degrees C. The variation in the commencement of low air temperature treatment did not have an effect on the level of spikelet sterility, indicating that exposure to low temperature during the young microspore stage was more important than the duration of exposure. Spikelet sterility of common cultivars showed a significant correlation between cold air and cold water screenings (r(2) = 0.63, p < 0.01), cold air and field screenings (r(2) = 0.52, p < 0.01) and cold water and field screenings (r(2) = 0.53, p < 0.01), indicating that cold air and cold water can be used for screening genotypes for low temperature tolerance. HSC55, M 103 and Jyoudeki were identified as cold tolerant and Doongara, Sasanishiki and Nipponbare as susceptible cultivars. There was a significant negative relationship between spikelet sterility and both the number of engorged pollen grains per anther and anther area only after imposing cold air and cold water treatment hence, it was concluded that these flowering traits were facultative in nature. In addition, cultivars originating from Australia and California were inefficient at producing filled grain with similar sized anthers containing a similar number of engorged pollen grains as cultivars from other origins. One suggested reason for this poor conversion to filled grain of cultivars from Australia and California may be associated with their small stigma area, particularly when exposed to low temperature conditions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Low temperature during microspore development increases spikelet sterility and reduces grain yield in rice (Oryza sativa L.). The objectives of this study were to determine genotypic variation in spikelet sterility in the field in response to low-temperature and then to examine the use of physio-morphological traits at flowering to screen for cold tolerance. Multiple-sown field experiments were conducted over 4 consecutive years in the rice-growing region of Australia to increase the likelihood of encountering low-temperature during microspore development. More than 50 cultivars of various origins were evaluated, with 7 cultivars common to all 4 years. The average minimum temperature for 9 days during microspore development was used as a covariate in the analysis to compare cultivars at a similar temperature. The low-temperature conditions in Year 4 identified cold-tolerant cultivars such as Hayayuki and HSC55 and susceptible cultivars such as Sasanishiki and Doongara. After low temperature conditions, spikelet sterility was negatively correlated with the number of engorged pollen grains, anther length, anther area, anther width, and stigma area. The number of engorged pollen grains and anther length were found to be facultative traits as their relationships with spikelet sterility were identified only after cold water exposure and did not exist under non-stressed conditions.
Resumo:
In order to analyze the pollen resources used by the orchid bee Euglossa annectans, samples of larval provisions from cells under construction were taken from 12 different trap nests (wooden boxes) on Santa Catarina Island, southern Brazil. The 43 samples collected between 2002 and 2005 represented all months except December. Overall, 74 pollen types from 24 families were distinguished. Among the 26 pollen types that reached more than 10% in monthly means, the families Melastomataceae, Bromeliaceae, Ochnaceae, Fabaceae, and Myrtaceae were most frequently represented. The Shannon-Weaver diversity index H' for the 43 brood cells varied from 0.10-1.65 and the annual diversity was 0.98. Similarity indices ranged from 0 to 0.87 and were highest during spring and summer. The results characterize E. annectans as a polylectic species. Based on these data, we can conclude that Euglossa females may act as pollinators of many forest species.
Resumo:
We evaluated the ratio between the number of pollen foragers and the total number of bees entering colonies of Melipona bicolor, a facultative polygynous species of stingless bees. The variables considered in our analysis were: seasonality, colony size and the number of physogastric queens in each colony. The pollen forager ratios varied significantly between seasons; the ratio was higher in winter than in summer. However, colony size and number of queens per colony had no significant effect. We conclude that seasonal differences in pollen harvest are related to the production of sexuals and to the number of individuals and their body size.
Resumo:
Pollen counts from samples taken from storage pots throughout one year (from October to September) were adjusted by Tasei's volumetric correction coefficient for the determination of pollen sources exploited by two colonies of Nannotrigona testaceicornis in Sao Paulo, Brazil. The results obtained by this sampling technique for seven months (December to June) were compared with those from corbicula load samples taken within the same period. This species visited a large variety of plant species, but few of them were frequently used. As a rule, pollen sources that appeared at frequencies greater than 1% were found with both sampling methods and significant positive correlations (Spearman correlation coefficient) were found between their values. The pollen load sample data showed that N. testaceicornis gathered pollen throughout the external activity period.
Resumo:
Bee pollen has been used for many years in both traditional medicine and supplementary nutrition, as well as in alternative diets, mainly due to its nutritional properties and health benefits. Bee pollen production is a recent activity in Brazil, having begun in the late 1980s. However, the country has the potential of being a large world producer of high quality pollen, particularly because of the great diversity of tropical flora and the resistance of the Brazilian Apis mellifera bee races. Thirty-six samples of bee pollen from the Southern region of Brazil were analyzed regarding pollen types and physicochemical and nutritional composition. Only one sample was considered monofloral, which was exclusively composed by pollen from the Asteraceae family). The State of Parana showed a greater variety of pollen types, 18 in total, representing 82% of the total number identified in this study. The bee pollen in the States of Rio Grande do Sul and Parana showed a higher number of samples with humidity content above the standard permitted by the Brazilian legislation, i.e. over 4%. The bee pollen was characterized by its high protein content with average values of 20.47%. The analysis regarding humidity, lipids and sugar showed no statistical differences among the samples (p<0.05). The pollen samples had a high concentration of reducible sugars (48%). The predominant minerals in the samples PR, SC and RS were phosphorus (7102.29, 6873.40, 6661.73 mg/kg of pollen), followed by potassium (5383.73, 4997.77, 4773.26 mg/kg of pollen), calcium (1179.05, 961.93, 848.36 mg/kg of pollen) and magnesium (818.02, 679.01, 725.89 mg/kg of pollen). Statistical analysis (Tukey test) demonstrated no significant difference between the contents of calcium, copper, iron, phosphorus and sodium in the pollen samples of the South of Brazil. However, the samples from the State of Parana contained the highest contents of potassium and differed statistically from the samples of the State of Rio Grande do Sul.
Resumo:
The objective was to adjust a protocol for peach pollen grains in vitro germination. For that, were realized five experiments with the purpose of establish the ideal concentration of sucrose, agar, calcium nitrate, boric acid, the best pH value, the germination temperature and the polinic tube emission time. As vegetal material, was used the Aurora 1 and Douradao cultivars. For the Aurora 1 cultivar, higher germination of pollen grains was obtained with the use of 48,29 g. L(-1) of sucrose, 10 g. L(-1) of agar, 400 mg.L(-1) of boric acid and pH 5,5. For the Douradao cultivar, higher germination was obtained on medium containing 90 g.L(-1) of sucrose, 10 g.L(-1) of agar, 400 mg.L(-1) of boric acid, 369 mg.L(-1) of calcium nitrate and pH 6,5. The best temperature for the germination of the pollen grains for both cultivars was 25 degrees C, being the pollen grains germination percentage raising proportionally directly to the evaluation time.
Resumo:
Pollen transport to a receptive stigma can be facilitated through different pollinators, which submits the pollen to different selection pressures. This study aimed to associate pollen and stigma morphology with zoophily in species of the tribe Phaseoleae. Species of the genera Erythrina, Macroptilium and Mucuna with different pollinators were chosen. Pollen grains and stigmas were examined under light microscopy (anatomy), scanning electronic microscopy (surface analyses) and transmission electronic microscopy (ultrastructure). The three genera differ in terms of pollen wall ornamentation, pollen size, pollen aperture, thickness of the pollen wall, amount of pollenkitt, pollen hydration status and dominant reserves within the pollen grain, while species within each genus are very similar in most studied characteristics. Most of these features lack relationships to pollinator type, especially in Erythrina and Mucuna. Pollen reserves are discussed on a broad scale, according to the occurrence of protein in the pollen of invertebrate- or vertebrate-pollinated species. Some pollen characteristics are more associated to semi-dry stigma requirements. This apical, compact, cuticularised and secretory stigma occurs in all species investigated. We conclude that data on pollen and stigma structure should be included together with those on floral morphology and pollinator behaviour for the establishment of functional pollination classes.
Resumo:
This study aims to evaluate the feasibility of using simple techniques - pollen abortion rates, passive diffusive tubes (NO(2)) and trace element accumulation in tree barks - when determining the area of influence of pollution emissions produced in a traffic corridor. Measurements were performed at 0, 60 and 120 meters from a major road with high vehicular traffic, taking advantage of a sharp gradient that exists between the road and a cemetery. NO(2) values and trace elements measured at 0 meters were significantly higher than those measured at more distant points. Al, S. Cl, V. Fe, Cu, and Zn exhibited a higher concentration in tree barks at the vicinity of the traffic corridor. The same pattern was observed for the pollen abortion rates measured at the three different sites. Our data suggests that simple techniques may be applied either to validate dispersion land-based models in an urban settings or, alternatively, to provide better spatial resolution to air pollution exposure when high-resolution pollution monitoring data are not available. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The reproductive biology and pollination mechanisms of Govenia utriculata (Sw.) Lindl. were studied in a mesophytic semideciduous forest at Serra do Japi, south-eastern Brazil. The floral visitors and pollination mechanisms were recorded, and experimental pollinations were carried out to determine the breeding system of this species. Populations of G. utriculata growing at Serra do Japi are exclusively visited and pollinated by two species of hoverflies in the genus Salpingogaster (Diptera: Syrphidae) that are attracted by deceit to the flowers of this orchid species. The lip apex and the column base present small brownish and yellow to orange spots that mimic pollen clusters. Govenia utriculata is self-compatible, but pollinator dependent. Natural fruit set was low (10%), but similar to that of other non-obligatorily autogamous sympatric orchid species that occur at Serra do Japi and of other fly-pollinated orchid species pollinated through deceptive mechanisms.