973 resultados para Engineering, Civil|Meteorology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vol. 4-8 have imprint: London ; New York : E. & F.N. Spon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic from major hurricane evacuations is known to cause severe gridlocks on evacuation routes. Better prediction of the expected amount of evacuation traffic is needed to improve the decision-making process for the required evacuation routes and possible deployment of special traffic operations, such as contraflow. The objective of this dissertation is to develop prediction models to predict the number of daily trips and the evacuation distance during a hurricane evacuation. ^ Two data sets from the surveys of the evacuees from Hurricanes Katrina and Ivan were used in the models' development. The data sets included detailed information on the evacuees, including their evacuation days, evacuation distance, distance to the hurricane location, and their associated socioeconomic characteristics, including gender, age, race, household size, rental status, income, and education level. ^ Three prediction models were developed. The evacuation trip and rate models were developed using logistic regression. Together, they were used to predict the number of daily trips generated before hurricane landfall. These daily predictions allowed for more detailed planning over the traditional models, which predicted the total number of trips generated from an entire evacuation. A third model developed attempted to predict the evacuation distance using Geographically Weighted Regression (GWR), which was able to account for the spatial variations found among the different evacuation areas, in terms of impacts from the model predictors. All three models were developed using the survey data set from Hurricane Katrina and then evaluated using the survey data set from Hurricane Ivan. ^ All of the models developed provided logical results. The logistic models showed that larger households with people under age six were more likely to evacuate than smaller households. The GWR-based evacuation distance model showed that the household with children under age six, income, and proximity of household to hurricane path, all had an impact on the evacuation distances. While the models were found to provide logical results, it was recognized that they were calibrated and evaluated with relatively limited survey data. The models can be refined with additional data from future hurricane surveys, including additional variables, such as the time of day of the evacuation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"DTIE Issuance Date: December 1962."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"November 1989"--p. iii.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vol. 3 by Allan Cunningham.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper aims to develop the methodology and strategy for concurrent finite element modeling of civil infrastructures at the different scale levels for the purposes of analyses of structural deteriorating. The modeling strategy and method were investigated to develop the concurrent multi-scale model of structural behavior (CMSM-of-SB) in which the global structural behavior and nonlinear damage features of local details in a large complicated structure could be concurrently analyzed in order to meet the needs of structural-state evaluation as well as structural deteriorating. In the proposed method, the “large-scale” modeling is adopted for the global structure with linear responses between stress and strain and the “small-scale” modeling is available for nonlinear damage analyses of the local welded details. A longitudinal truss in steel bridge decks was selected as a case to study how a CMSM-of-SB was developed. The reduced-scale specimen of the longitudinal truss was studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details, while the multi-scale models using constraint equations and substructuring were developed for numerical simulation. The comparison of dynamic and static response between the calculated results by different models indicated that the proposed multi-scale model was found to be the most efficient and accurate. The verification of the model with results from the tested truss under the specific loading showed that, responses at the material scale in the vicinity of local details as well as structural global behaviors could be obtained and fit well with the measured results. The proposed concurrent multi-scale modeling strategy and implementation procedures were applied to Runyang cable-stayed bridge (RYCB) and the CMSM-of-SB of the bridge deck system was accordingly constructed as a practical application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

List of members in each vol.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vol. for 1844 issued without title.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems—stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A major consequence of contamination at the local level’s population as it relates to environmental health and environmental engineering is childhood lead poisoning. Environmental contamination is one of the pressing environmental concerns facing the world today. Current approaches often focus on large contaminated industrial size sites that are designated by regulatory agencies for site remediation. Prior to this study, there were no known published studies conducted at the local and smaller scale, such as neighborhoods, where often much of the contamination is present to remediate. An environmental health study of local lead-poisoning data in Liberty City, Little Haiti and eastern Little Havana in Miami-Dade County, Florida accounted for a disproportionately high number of the county’s reported childhood lead poisoning cases. An engineering system was developed and designed for a comprehensive risk management methodology that is distinctively applicable to the geographical and environmental conditions of Miami-Dade County, Florida. Furthermore, a scientific approach for interpreting environmental health concerns, while involving detailed environmental engineering control measures and methods for site remediation in contained media was developed for implementation. Test samples were obtained from residents and sites in those specific communities in Miami-Dade County, Florida (Gasana and Chamorro 2002). Currently lead does not have an Oral Assessment, Inhalation Assessment, and Oral Slope Factor; variables that are required to run a quantitative risk assessment. However, various institutional controls from federal agencies’ standards and regulation for contaminated lead in media yield adequate maximum concentration limits (MCLs). For this study an MCL of .0015 (mg/L) was used. A risk management approach concerning contaminated media involving lead demonstrates that the linkage of environmental health and environmental engineering can yield a feasible solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modal strain energy method, which depends on the vibration characteristics of the structure, has been reasonably successful in identifying and localising damage in the structure. However, existing strain energy methods require the first few modes to be measured to provide meaningful damage detection. Use of individual modes with existing strain energy methods may indicate false alarms or may not detect the damage at or near the nodal points. This paper proposes a new modal strain energy based damage index which can detect and localize the damage using any one of the modes measured and illustrates its application for beam structures. It becomes evident that the proposed strain energy based damage index also has potential for damage quantification.