958 resultados para Energy-aware computing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a task-based programming model and runtime system that exploit the observation that not all parts of a program are equally significant for the accuracy of the end-result, in order to trade off the quality of program outputs for increased energy-efficiency. This is done in a structured and flexible way, allowing for easy exploitation of different points in the quality/energy space, without adversely affecting application performance. The runtime system can apply a number of different policies to decide whether it will execute less-significant tasks accurately or approximately.

The experimental evaluation indicates that our system can achieve an energy reduction of up to 83% compared with a fully accurate execution and up to 35% compared with an approximate version employing loop perforation. At the same time, our approach always results in graceful quality degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

QoS plays a key role in evaluating a service or a service composition plan across clouds and data centers. Currently, the energy cost of a service's execution is not covered by the QoS framework, and a service's price is often fixed during its execution. However, energy consumption has a great contribution in determining the price of a cloud service. As a result, it is not reasonable if the price of a cloud service is calculated with a fixed energy consumption value, if part of a service's energy consumption could be saved during its execution. Taking advantage of the dynamic energy-Aware optimal technique, a QoS enhanced method for service computing is proposed, in this paper, through virtual machine (VM) scheduling. Technically, two typical QoS metrics, i.e., the price and the execution time are taken into consideration in our method. Moreover, our method consists of two dynamic optimal phases. The first optimal phase aims at dynamically benefiting a user with discount price by transparently migrating his or her task execution from a VM located at a server with high energy consumption to a low one. The second optimal phase aims at shortening task's execution time, through transparently migrating a task execution from a VM to another one located at a server with higher performance. Experimental evaluation upon large scale service computing across clouds demonstrates the validity of our method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unending quest for performance improvement coupled with the advancements in integrated circuit technology have led to the development of new architectural paradigm. Speculative multithreaded architecture (SpMT) philosophy relies on aggressive speculative execution for improved performance. However, aggressive speculative execution comes with a mixed flavor of improving performance, when successful, and adversely affecting the energy consumption (and performance) because of useless computation in the event of mis-speculation. Dynamic instruction criticality information can be usefully applied to control and guide such an aggressive speculative execution. In this paper, we present a model of micro-execution for SpMT architecture that we have developed to determine the dynamic instruction criticality. We have also developed two novel techniques utilizing the criticality information namely delaying the non-critical loads and the criticality based thread-prediction for reducing useless computations and energy consumption. Experimental results showing break-up of critical instructions and effectiveness of proposed techniques in reducing energy consumption are presented in the context of multiscalar processor that implements SpMT architecture. Our experiments show 17.7% and 11.6% reduction in dynamic energy for criticality based thread prediction and criticality based delayed load scheme respectively while the improvement in dynamic energy delay product is 13.9% and 5.5%, respectively. (c) 2012 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic Voltage and Frequency Scaling (DVFS) exhibits fundamental limitations as a method to reduce energy consumption in computing systems. In the HPC domain, where performance is of highest priority and codes are heavily optimized to minimize idle time, DVFS has limited opportunity to achieve substantial energy savings. This paper explores if operating processors Near the transistor Threshold Volt- age (NTV) is a better alternative to DVFS for break- ing the power wall in HPC. NTV presents challenges, since it compromises both performance and reliability to reduce power consumption. We present a first of its kind study of a significance-driven execution paradigm that selectively uses NTV and algorithmic error tolerance to reduce energy consumption in performance- constrained HPC environments. Using an iterative algorithm as a use case, we present an adaptive execution scheme that switches between near-threshold execution on many cores and above-threshold execution on one core, as the computational significance of iterations in the algorithm evolves over time. Using this scheme on state-of-the-art hardware, we demonstrate energy savings ranging between 35% to 67%, while compromising neither correctness nor performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environment monitoring applications using Wireless Sensor Networks (WSNs) have had a lot of attention in recent years. In much of this research tasks like sensor data processing, environment states and events decision making and emergency message sending are done by a remote server. A proposed cross layer protocol for two different applications where, reliability for delivered data, delay and life time of the network need to be considered, has been simulated and the results are presented in this paper. A WSN designed for the proposed applications needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from source nodes to the sink. A cross layer based on the design given in [1] has been extended and simulated for the proposed applications, with new features, such as routes discovery algorithms added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Service-oriented wireless sensor networks (WSNs) are being paid more and more attention because service computing can hide complexity of WSNs and enables simple and transparent access to individual sensor nodes. Existing WSNs mainly use IEEE 802.15.4 as their communication specification, however, this protocol suite cannot support IP-based routing and service-oriented access because it only specifies a set of physical- and MAC-layer protocols. For inosculating WSNs with IP networks, IEEE proposed a 6LoWPAN (IPv6 over LoW Power wireless Area Networks) as the adaptation layer between IP and MAC layers. However, it is still a challenging task how to discover and manage sensor resources, guarantee the security of WSNs and route messages over resource-restricted sensor nodes. This paper is set to address such three key issues. Firstly, we propose a service-oriented WSN architectural model based on 6LoWPAN and design a lightweight service middleware SOWAM (service-oriented WSN architecture middleware), where each sensor node provides a collection of services and is managed by our SOWAM. Secondly, we develop a security mechanism for the authentication and secure connection among users and sensor nodes. Finally, we propose an energyaware mesh routing protocol (EAMR) for message transmission in a WSN with multiple mobile sinks, aiming at prolonging the lifetime of WSNs as long as possible. In our EAMR, sensor nodes with the residual energy lower than a threshold do not forward messages for other nodes until the threshold is leveled down. As a result, the energy consumption is evened over sensor nodes significantly. The experimental results demonstrate the feasibility of our service-oriented approach and lightweight middleware SOWAM, as well as the effectiveness of our routing algorithm EAMR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of the strong demands of physical resources of big data, it is an effective and efficient way to store and process big data in clouds, as cloud computing allows on-demand resource provisioning. With the increasing requirements for the resources provisioned by cloud platforms, the Quality of Service (QoS) of cloud services for big data management is becoming significantly important. Big data has the character of sparseness, which leads to frequent data accessing and processing, and thereby causes huge amount of energy consumption. Energy cost plays a key role in determining the price of a service and should be treated as a first-class citizen as other QoS metrics, because energy saving services can achieve cheaper service prices and environmentally friendly solutions. However, it is still a challenge to efficiently schedule Virtual Machines (VMs) for service QoS enhancement in an energy-aware manner. In this paper, we propose an energy-aware dynamic VM scheduling method for QoS enhancement in clouds over big data to address the above challenge. Specifically, the method consists of two main VM migration phases where computation tasks are migrated to servers with lower energy consumption or higher performance to reduce service prices and execution time. Extensive experimental evaluation demonstrates the effectiveness and efficiency of our method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing capability of mobile devices and social networks to gather contextual and social data has led to increased interest in context-aware computing for mobile applications. This paper explores ways of reconciling two different viewpoints of context, representational and interactional, that have arisen respectively from technical and social science perspectives on context-aware computing. Through a case study in agile ridesharing, the importance of dynamic context control, historical context and broader context is discussed. We build upon earlier work that has sought to address the divide by further explicating the problem in the mobile context and expanding on the design approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From location-aware computing to mining the social web, representations of context have promised to make better software applications. The opportunities and challenges of context-aware computing from representational, situated and interactional perspectives have been well documented, but arguments from the perspective of design are somewhat disparate. This paper draws on both theoretical perspectives and a design framing, using the problem of designing a social mobile agile ridesharing system, in order to reflect upon and call for broader design approaches for context-aware computing and human-computer Interaction research in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every day we are confronted with social interactions with other people. Our social life is characterised by norms that manifest as attitudinal and behavioural uniformities among people. With greater awareness about our social context, we can interact more efficiently. Any theory or model of human interaction that fails to include social concepts could be suggested to lack a critical element. This paper identifies the construct of social concepts that need to be supported by future context-aw are systems from an interdisciplinary perspective. It discusses the limitations of existing context-aware systems to support social psychology theories related to the identification and membership of social groups. We argue that social norms are among the core modelling concepts that future context-aware systems need to capture with the view to support and enhance social interactions. A detailed summary of social psychology theory relevant to social computing is given, followed by a formal definition of the process with each such norm advertised and acquired. The social concepts identified in this paper could be used to simulate agent interactions imbued with social norms or use ICT to facilitate, assist, enhance or understand social interactions. They also could be used in virtual communities modelling where the social awareness of a community as well as the process of joining and exiting a community are important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing network lifetime is important in wireless sensor/ad-hoc networks. In this paper, we are concerned with algorithms to increase network lifetime and amount of data delivered during the lifetime by deploying multiple mobile base stations in the sensor network field. Specifically, we allow multiple mobile base stations to be deployed along the periphery of the sensor network field and develop algorithms to dynamically choose the locations of these base stations so as to improve network lifetime. We propose energy efficient low-complexity algorithms to determine the locations of the base stations; they include i) Top-K-max algorithm, ii) maximizing the minimum residual energy (Max-Min-RE) algorithm, and iii) minimizing the residual energy difference (MinDiff-RE) algorithm. We show that the proposed base stations placement algorithms provide increased network lifetimes and amount of data delivered during the network lifetime compared to single base station scenario as well as multiple static base stations scenario, and close to those obtained by solving an integer linear program (ILP) to determine the locations of the mobile base stations. We also investigate the lifetime gain when an energy aware routing protocol is employed along with multiple base stations.