982 resultados para Energy utilization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the face of increasing concern over global warming and climate change, interest in the utilizzation of solar energy for building operations is rapidly growing. In this entry, the importance of using renewable energy in building operations is first introduced. This is followed by a general overview on the energy from the sun and the methods to utilize solar energy. Possible applications of solar energy in building operations are then discussed, which include the use of solar energy in the forms of daylighting, hot water heating, space heating and cooling, and building-integrated photovoltaics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy is a major constituent of a small-scale industry such as grain mills. Based on a sample survey of several mills spread over Karnataka, a state in India, a number of energy analyses were conducted primarily to establish relationships and secondarily to look at them in more detail. Initially specific energy consumption (SEC) was computed for all industries so as to compare their efficiencies of energy use. A wide disparity exists in SEC among various grain mills. In order to understand the disparities better, regression analyses were performed on the variables energy and production, SEC and production, and energy/SEC with percentage production capacity utilization. The studies show that smaller range industries have lower capacity utilization. This paper also examines the energy savings possible by shifting industries from the lower production ranges to the next higher range (thereby utilizing installed production capacity optimally). This leads to an overall energy capacity saving of 23.12% for the foodgrain sector and 18.67% for the paddy dehusking subgroup. If this is extrapolated to the whole state, we obtain a saving of 55 million kWh.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of energy utilisation in cattle is a determinant of the profitability of milk and beef production, as well as their environmental impact. At an animal level, meat and milk production by ruminants is less efficient than pig and poultry production, in part due to lower digestibility of forages compared with grains. However, when compared on the basis of human-edible inputs, the ruminant has a clear efficiency advantage. There has been recent interest in feed conversion efficiency (FCE) in dairy cattle and residual feed intake, an indicator of FCE, in beef cattle. Variation between animals in FCE may have genetic components, allowing selection for animals with greater efficiency and reduced environmental impact. A major source of variation in FCE is feed digestibility, and thus approaches that improve digestibility should improve FCE if rumen function is not disrupted. Methane represents a substantial loss of digestible energy from rations. Major determinants of methane emission are the amount of feed consumed and the proportions of forage and concentrates fed. In addition, feeding fat has long been known to reduce methane emission. A myriad of other supplements and additives are currently being investigated as mitigators of methane emission, but in many cases compounds effective in sheep are ineffective in lactating dairy cows. Ultimately, the adoption of ‘best practice’ in diet formulation and management may be the most effective option for reducing methane. In assessing the efficiency of energy use for milk and meat production by cattle, and their environmental impact, it is imperative that comparisons be made at a systems level, and that the wider social and economic implications of mitigation policy are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The factorial approach has been used to partition the energy requirements into maintenance, growth, and production. The coefficients determined for these purposes can be used to elaborate energy requirement models. These models consider the body weight, weight gain, egg production, and environmental temperature to determine the energy requirements for poultry. Predicting daily energy requirement models can help to establish better and more profitable feeding programs for poultry. Studies were conducted at UNESP-Jaboticabal to determine metabolizable energy (ME) requirement models for broiler breeders, laying hens, and broilers. These models were evaluated in performance trials and provided good adjustments. Therefore, they could be used to establish nutritional programs. This review aims to outline the results found at UNESP studies and to show the application of models in nutritional programs for broiler breeders, laying hens, and broilers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three trials were carried out to determine energy metabolized (EM) requirement model for starting and growing pullets from different strains, at five ambient temperatures and different percentage feather coverage. In Trial I, metabolizable energy requirements for maintenance (MEm) and efficiency of energy utilization were estimated using 64 birds of two different strains, Hy-Line W36 (HLW36) and Hy-Line Semi-heavy (HLSH), from 9 to 13 weeks of age. The effects of ambient temperature (12, 18, 24, 30 and 36ºC) and percentage feather coverage (0, 50 and 100%) on MEm were assessed in the second trial, using 48 birds per temperature per strain (HLSH and HLW36) from 9 to 13 weeks of age. Trial III evaluated ME requirements for weight gain (MEg) using 1,200 birds from two light strains (HLW36 and Hisex Light, HL) and two semi-heavy strains (HLSH and Hisex Semi-heavy, HSH) reared until 18 weeks of age. According to the prediction models, MEm changed as a function of temperature and feather coverage, whereas MEg changed as a function of age and bird strain. Thus, two models were developed for birds aged 1 to 6 weeks, one model for the light strain and one for the semi-heavy strain. Energy requirements (ER) were different among strains from 7 to 12 weeks, and therefore 4 models were elaborated. From 13 to 18 weeks, one single model was produced for semi-heavy birds, since ER between semi-heavy strains were not different, whereas two different models were elaborated for the light layers. MEg of light birds was higher than MEg of semi-heavy birds, independent of age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine models for ME requirements for broiler breeder pullets using the factorial method. The influence of the temperature on maintenance ME requirements was determined by experiments conducted in three environmental rooms with temperature kept constant at 15, 22, and 30°C, using the comparative slaughter technique. The energy requirements for weight gain were determined based on the body energy content and efficiency of energy utilization for weight gain. Two ME requirement models for each age were developed using the coefficients for maintenance and weight gain. The models for 3 to 8 wk were ME = W 0.75 (186.52 - 1.94T) + 2.47WG, and ME = W 0.75 (174 - 1.88T) + 2.83WG; for 9 to 14 wk, ME = W 0.75 (186.52 - 1.94T) + 2.69WG, and ME = W 0.75 (174 - 1.88T) + 2.50WG; and 15 to 20 wk, ME = W 0.75 (186.52 - 1.94T) + 2.76WG, and ME = W 0.75 (174 - 1.88T) + 3.24WG. In these equations, W is BW (kg), T is temperature (°C), and WG is daily weight gain (g). These models were compared to the breeder's recommendations in a feeding trial from 5 to 20 wk of age. Models 1 and 2 provided energy intakes that promoted BW smaller than the breeder's recommendation. However, all breeder pullets had weights above the standard recommendation. Model 2 gave the smallest ME intake and BW close to the standard recommendation and provided the best prediction of ME requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To test if a water extract of Coleus barbatus (WEB) has any effect on weight gain, food energy utilization and lipid metabolism in young rats with obstructive cholestasis. METHODS: Forty 21 day old (P21) Wistar rats, in groups of 10, were submitted to one of the following treatments: a sham operation with daily water or WEB administration, double ligature and resection of the bile duct with daily water or WEB administration. At P49 they were submitted for euthanasia when the following were determined: ingested feed (IF), energy utilization (EU) and weight gain (WG) from P29 to P49, together with total serum cholesterol (TC) and triacylglycerol (TG) concentrations, liver wet weight (LWW) and fat content (LFC). Two Way ANOVA and the S.N.K. test for paired comparisons were employed to study the effects of cholestasis and those of WEB and their interactions (p < or = 0.05). RESULTS: Cholestasis, independently of WEB, and WEB, independently of cholestasis both reduced IF, EU, and WG but there was no significant interaction between the two factors. Cholestasis, independently of WEB, increased LWW, LFC, the TC and TG The WEB, independently of cholestasis, reduced these values, and there was a significant interaction between the two factors; such that these effects were more accentuated in animals with cholestasis. CONCLUSION: The WEB reduced IF, WG, and EU, both in the presence and absence of cholestasis in the same proportion. It also partially inhibited the increase in LWW, LFC, TC and TG caused by cholestasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two experiments were conducted to develop and evaluate a model to estimate ME requirements and determine Gompertz growth parameters for broilers. The first experiment was conducted to determine maintenance energy requirements and the efficiencies of energy utilization for fat and protein deposition. Maintenance ME (ME m) requirements were estimated to be 157.8, 112.1, and 127.2 kcal of ME/kg 0.75 per day for broilers at 13, 23, and 32°C, respectively. Environmental temperature (T) had a quadratic effect on maintenance requirements (ME m = 307.87 - 15.63T + 0.3105T 2; r 2= 0.93). Energy requirements for fat and protein deposition were estimated to be 13.52 and 12.59 kcal of ME/g, respectively. Based on these coefficients, a model was developed to calculate daily ME requirements: ME = BW 0.75 (307.87 - 15.63T + 0.3105 T 2) + 13.52 G f + 12.59 G p. This model considers live BW, the effects of environmental temperature, and fractional fat (G f) and protein (G p) deposition. The second experiment was carried out to estimate the growth parameters of Ross broilers and to collect data to evaluate the ME requirement model proposed. Live BW, empty feather-free carcass, weight of the feathers, and carcass chemical compositions were analyzed until 16 wk of age. Parameters of Gompertz curves for each component were estimated. Males had higher growth potential and higher capacity to deposit nutrients than females, except for fat deposition. Data of BW and body composition collected in this experiment were fitted into the energy model proposed herein and the equations described by Emmans (1989) and Chwalibog (1991). The daily ME requirements estimated by the model determined in this study were closer to the ME intake observed in this trial compared with other models. ©2005 Poultry Science Association, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models of daily energy requirement can help to establish better and more profitable feeding programs for poultry. Studies have been conducted at UNESP-Jaboticabal-Brazil with the aim of studying energy utilization in broiler breeders, laying hens, and broilers, and to establish metabolisable energy requirement models. The factorial approach was used to partition the energy requirements into maintenance, growth, and production components. The resulting models consider body weight, weight gain, egg production, and environmental temperature for the determination of the energy requirements of poultry. These models were evaluated in performance trials and provided good estimates. Therefore, they can be used to establish nutritional programs. The aim of this chapter is to describe the development of these models and to outline the results of our studies at UNESP.