985 resultados para Energy needs
Resumo:
Studies on children with cancer have suggested that energy expenditure may indeed be greater than predicted for healthy children. Nutritional assessment is important for intervention and for the prevention of complications associated with malnutrition. The present study aimed to describe the nutritional status, energy expenditure, and substrate utilization of children and adolescents with cancer compared to healthy children matched for age, sex, and body mass index. Subjects were evaluated by anthropometry, food intake pattern, and body composition analysis. Energy expenditure and substrate oxidation were measured by indirect calorimetry. Indirect calorimetry data, energy, and macronutrient intake, anthropometry, and body composition parameters showed no significant differences between groups. There was no evidence of increased energy expenditure or of a change in substrate utilization in children with cancer compared to the healthy group. The data regarding usual food consumption showed no significant differences between groups.
Resumo:
"General, misc., & progress report (nonnuclear) TID-4500."
Resumo:
Sunset project manager : Terry H. Stoica.
Resumo:
Purpose: For ultra-endurance athletes, whose energy expenditure is likely to be at the extremes of human tolerance for sustained periods of time, there is increased concern regarding meeting energy needs. Due to the lack of data outlining the energy requirements of such athletes, it is possible that those participating in ultra-endurance exercise are compromising performance, as well as health, as a result of inadequate nutrition and energy intake. To provide insight into this dilemma, we have presented a case study of a 37-yr-old ultra-marathon runner as he runs around the coast of Australia. Methods: Total energy expenditure was measured over a 2-wk period using the doubly labeled water technique. Results: The average total energy expenditure of the case subject was 6321 kcal.d(-1). Based on the expected accuracy and precision of the doubly labeled water technique the subject's total energy expenditure might range between 6095 and 6550 kcal.d(-1). The subject's average daily water turnover was 6.083 L over the 14-d period and might range between 5.9 L and 6.3 L.d(-1). Conclusions: This information will provide a guide to the energy requirements of ultra-endurance running and enable athletes, nutritionists, and coaches to optimize performance without compromising the health of the participant.
Resumo:
Most of small islands around the world today, are dependent on imported fossil fuels for the majority of their energy needs especially for transport activities and electricity production. The use of locally renewable energy resources and the implementation of energy efficiency measures could make a significant contribution to their economic development by reducing fossil fuel imports. An electrification of vehicles has been suggested as a way to both reduce pollutant emissions and increase security of supply of the transportation sector by reducing the dependence on oil products imports and facilitate the accommodation of renewable electricity generation, such as wind and, in the case of volcanic islands like Sao Miguel (Azores) of the geothermal energy whose penetration has been limited by the valley electricity consumption level. In this research, three scenarios of EV penetration were studied and it was verified that, for a 15% LD fleet replacement by EVs with 90% of all energy needs occurring during the night, the accommodation of 10 MW of new geothermal capacity becomes viable. Under this scenario, reductions of 8% in electricity costs, 14% in energy, 23% in fossil fuels use and CO2 emissions for the transportation and electricity production sectors could be expected.
Resumo:
The adoption of a sustainable approach to meeting the energy needs of society has recently taken on a more central and urgent place in the minds of many people. There are many reasons for this including ecological, environmental and economic concerns. One particular area where a sustainable approach has become very relevant is in the production of electricity. The contribution of renewable sources to the energy mix supplying the electricity grid is nothing new, but the focus has begun to move away from the more conventional renewable sources such as wind and hydro. The necessity of exploring new and innovative sources of renewable energy is now seen as imperative as the older forms (i.e. hydro) reach the saturation point of their possible exploitation. One such innovative source of energy currently beginning to be utilised in this regard is tidal energy. The purpose of this thesis is to isolate one specific drawback to tidal energy, which could be considered a roadblock to this energy source being a major contributor to the Irish national grid. This drawback presents itself in the inconsistent nature in which a tidal device generates energy over the course of a 24 hour period. This inconsistency of supply can result in the cycling of conventional power plants in order to even out the supply, subsequently leading to additional costs. The thesis includes a review of literature relevant to the area of tidal and other marine energy sources with an emphasis on the state of the art devices currently in development or production. The research carried out included tidal data analysis and manipulation into a model of the power generating potential at specific sites. A solution is then proposed to the drawback of inconsistency of supply, which involves the positioning of various tidal generation installations at specifically selected locations around the Irish coast. The temporal shift achieved in the power supply profiles of the individual sites by locating the installations in the correct locations, successfully produced an overall power supply profile with the smoother curve and a consistent base load energy supply. Some limitations to the method employed were also outlined, and suggestions for further improvements to the method were made.
Resumo:
In its 2007 Session, the Iowa General Assembly passed, and Governor Culver signed into law, extensive and far-reaching state energy policy legislation. This legislation created the Iowa Office of Energy Independence and the Iowa Power Fund. It also required a report to be issued each year detailing: • The historical use and distribution of energy in Iowa. • The growth rate of energy consumption in Iowa, including rates of growth for each energy source. • A projection of Iowa’s energy needs through the year 2025 at a minimum. • The impact of meeting Iowa’s energy needs on the economy of the state, including the impact of energy production and use on greenhouse gas emissions. • An evaluation of renewable energy sources, including the current and future technological potential for such sources. Much of the energy information for this report has been derived from the on-line resources of the Energy Information Administration (EIA) of the United States Department of Energy (USDOE). The EIA provides policy-independent data, forecasts and analyses on energy production, stored supplies, consumption and prices. For complete, economy-wide information, the most recent data available is for the year 2008. For some energy sectors, more current data is available from EIA and other sources and, when available, such information has been included in this report.
Resumo:
The suitability of models specifically re-parameterized for analyzing energy balance data relating metabolizable energy intake to growth rate has recently been investigated in male broilers. In this study, the more adequate of those models was applied to growing turkeys to provide estimates of their energy needs for maintenance and growth. Three functional forms were used. They were: two equations representing diminishing returns behaviour (monomolecular and rectangular hyperbola); and one equation describing smooth sigmoidal behaviour with a fixed point of inflexion (Gompertz). The models estimated the metabolizable energy requirement for maintenance in turkeys to be 359-415 kJ/kg of live-weight/day. The predicted values of average net energy requirement for producing 1 g of gain in live-weight, between 1 and 4 times maintenance, varied from 8.7 to 10.9 kJ. These results and those previously reported for broilers are a basis for accepting the general validity of these models.
Resumo:
Summary 1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests. Keywords: bioenergetics; energy budget; individual-based models; population dynamics.
Resumo:
Tumour necrosis factor (TNF)-α has been found to be increased in malnourished chronic obstructive pulmonary disease (COPD) patients; however, the main cause of this phenomenon remains undetermined. In normal subjects, TNF-α production may be induced by dietary energy deprivation. The aim of this study was to investigate if stable COPD patients present alterations of inflammatory mediators after 48 h of dietary energy restriction. Fourteen COPD patients were admitted to the hospital while receiving an experimental diet with an energy content of approximately one-third of their energy needs. Clinical evaluation, nutritional assessment and serum levels of interleukin (IL)-6, TNF-α and C-reactive protein, and secretion of TNF-α by peripheral blood monocytes were assessed on admission and after the experimental diet. For reference values of the laboratory parameters, blood was collected from 10 healthy, elderly subjects. COPD patients showed significantly higher serum concentrations of IL-6 than control subjects, however, the experimental diet was not associated with statistically significant changes in the inflammatory mediators. The findings of this study, although preliminary because of the limited degree and duration of the energy restriction, suggest that the elevated levels of tumour necrosis factor-α, previously described in undernourished or weight-losing chronic obstructive pulmonary disease patients, may not be linked to a decrease of dietary energy intake.
Resumo:
Predictions about electric energy needs, based on current electric energy models, forecast that the global energy consumption on Earth for 2050 will double present rates. Using distributed procedures for control and integration, the expected needs can be halved. Therefore implementation of Smart Grids is necessary. Interaction between final consumers and utilities is a key factor of future Smart Grids. This interaction is aimed to reach efficient and responsible energy consumption. Energy Residential Gateways (ERG) are new in-building devices that will govern the communication between user and utility and will control electric loads. Utilities will offer new services empowering residential customers to lower their electric bill. Some of these services are Smart Metering, Demand Response and Dynamic Pricing. This paper presents a practical development of an ERG for residential buildings.
Resumo:
For many years the European Union has been improving the efficient use of energy resources and yet the demand for energy in the EU continues to increase. When Europe belonged to one of the world’s key energy markets with relatively easy access to energy resources, growing energy needs were not seen as a source of concern. Today, however, as the competition for energy resources is intensifying and the global position of the EU energy market is being challenged by growing economies in the developing countries, above all China and India, the EU needs to adopt bold policies to guarantee the sustainable supply of energy. This report argues the EU needs to develop a fully-fledged external energy policy; i.e. a common, coherent, strategic approach that build bridges between the interests and needs of the EU integrated energy market on the one hand and supplier countries on the other. The EU’s external energy policy has two main objectives. The first one is to ensure a sustainable, stable and cost-effective energy supply. The second is to promote energy market integration and regulatory convergence with neighbouring countries (often but not always this supports the achievement of the first objective). However, in order to improve its effectiveness, the EU’s external energy policy needs to be seen in a broader economic and political context. Any progress in energy cooperation with third countries is contingent upon the EU’s general stance and offer to those countries.
Resumo:
the work towards increased energy efficiency. In order to plan and perform effective energy renovation of the buildings, it is necessary to have adequate information on the current status of the buildings in terms of architectural features and energy needs. Unfortunately, the official statistics do not include all of the needed information for the whole building stock. This paper aims to fill the gaps in the statistics by gathering data from studies, projects and national energy agencies, and by calibrating TRNSYS models against the existing data to complete missing energy demand data, for countries with similar climate, through simulation. The survey was limited to residential and office buildings in the EU member states (before July 2013). This work was carried out as part of the EU FP7 project iNSPiRe. The building stock survey revealed over 70% of the residential and office floor area is concentrated in the six most populated countries. The total energy consumption in the residential sector is 14 times that of the office sector. In the residential sector, single family houses represent 60% of the heated floor area, albeit with different share in the different countries, indicating that retrofit solutions cannot be focused only on multi-family houses. The simulation results indicate that residential buildings in central and southern European countries are not always heated to 20 °C, but are kept at a lower temperature during at least part of the day. Improving the energy performance of these houses through renovation could allow the occupants to increase the room temperature and improve their thermal comfort, even though the potential for energy savings would then be reduced.
Resumo:
Purpose: The aim of this study was to compare the measured energy expenditure (EE) and the estimated basal EE (BEE) in critically ill patients. Materials and Methods: Seventeen patients from an intensive care unit were randomly evaluated. Indirect calorimetry was performed to calculate patient`s EE, and BEE was estimated by the Harris-Benedict formula. The metabolic state (EE/BEE x 100) was determined according to the following criteria: hypermetabolism, more than 130%; normal metabolism, between 90% and 130%; and hypometabolism, less than 90%. To determine the limits of agreement between EE and BEE, we performed a Bland-Altman analysis. Results: The average EE of patients was 6339 +/- 1119 kJ/d. Two patients were hypermetabolic (11.8%), 4 were hypometabolic (23.5%), and 11 normometabolic (64.7%). Bland-Altman analysis showed a mean of -126 +/- 2135 kJ/d for EE and BEE. Only one patient was outside the limits of agreement between the 2 methods (indirect calorimetry and Harris-Benedict). Conclusions: The calculation of energy needs can be done with the equation of Harris-Benedict associated with lower values of correction factors (approximately 10%) to avoid overfeeding, with constant monitoring of anthropometric and biochemical parameters to assess the nutritional changing and adjust the infusion of energy. (C) 2009 Elsevier Inc. All rights reserved.