978 resultados para Energy constraints
Resumo:
Aims We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark-energy equation-of-state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. Methods We implemented an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-redshift galaxies. Results Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, using supernovae alone; the parameter uncertainties are underestimated by 10%. The weak-lensing field-to-field variance between 1 deg2-MegaCam pointings is 5-15% higher than predicted from N-body simulations. We find no bias in the lensing signal at high redshift, within the framework of a simple model, and marginalising over cosmological parameters. Assuming a systematic underestimation of the lensing signal, the normalisation increases by up to 8%. Combining all three probes we obtain -0.10 < 1 + w < 0.06 at 68% confidence ( -0.18 < 1 + w < 0.12 at 95%), including systematic errors. Our results are therefore consistent with the cosmological constant . Systematics in the data increase the error bars by up to 35%; the best-fit values change by less than 0.15.
Resumo:
We briefly review some of the lower-energy constraints to the perturbative behaviour of the strong coupling αs, with some emphasis on the determination coming from the energy between two static sources calculated on the lattice.
Resumo:
Gas fermentation using acetogenic bacteria offers a promising route for the sustainable production of low carbon fuels and commodity chemicals from abundant, inexpensive C1 feedstocks including industrial waste gases, syngas, reformed methane or methanol. Clostridium autoethanogenum is a model gas fermenting acetogen that produces fuel ethanol and 2,3-butanediol, a precursor for nylon and rubber. Acetogens have already been used in large scale industrial fermentations, they are ubiquitous and known to play a prominent role in the global carbon cycle. Still, they are considered to live on the thermodynamic edge of life and potential energy constraints when growing on C1 gases pose a major challange for the commercial production of fuels and chemicals. We have developed a systematic platform to investigate acetogenic energy metabolism, exemplified here by experiments contrasting heterotrophic and autotrophic metabolism. The platform is built from complete omics technologies, augmented with genetic tools and complemented by a manually curated genome-scale mathematical model. Together the tools enable the design and development of new, energy efficient pathways and strains for the production of chemicals and advanced fuels via C1 gas fermentation. As a proof-of-platform, we investigated heterotrophic growth on fructose versus autotrophic growth on gas that demonstrate the role of the Rnf complex and Nfn complex in maintaining growth using the Wood–Ljungdahl pathway. Pyruvate carboxykinase was found to control the rate-limiting step of gluconeogenesis and a new specialized glyceraldehyde-3-phosphate dehydrogenase was identified that potentially enhances anabolic capacity by reducing the amount of ATP consumed by gluconeogenesis. The results have been confirmed by the construction of mutant strains.
Resumo:
Scalable video coding allows an efficient provision of video services at different quality levels with different energy demands. According to the specific type of service and network scenario, end users and/or operators may decide to choose among different energy versus quality combinations. In order to deal with the resulting trade-off, in this paper we analyze the number of video layers that are worth to be received taking into account the energy constraints. A single-objective optimization is proposed based on dynamically selecting the number of layers, which is able to minimize the energy consumption with the constraint of a minimal quality threshold to be reached. However, this approach cannot reflect the fact that the same increment of energy consumption may result in different increments of visual quality. Thus, a multiobjective optimization is proposed and a utility function is defined in order to weight the energy consumption and the visual quality criteria. Finally, since the optimization solving mechanism is computationally expensive to be implemented in mobile devices, a heuristic algorithm is proposed. This way, significant energy consumption reduction will be achieved while keeping reasonable quality levels.
Resumo:
Approximate execution is a viable technique for energy-con\-strained environments, provided that applications have the mechanisms to produce outputs of the highest possible quality within the given energy budget.
We introduce a framework for energy-constrained execution with controlled and graceful quality loss. A simple programming model allows users to express the relative importance of computations for the quality of the end result, as well as minimum quality requirements. The significance-aware runtime system uses an application-specific analytical energy model to identify the degree of concurrency and approximation that maximizes quality while meeting user-specified energy constraints. Evaluation on a dual-socket 8-core server shows that the proposed
framework predicts the optimal configuration with high accuracy, enabling energy-constrained executions that result in significantly higher quality compared to loop perforation, a compiler approximation technique.
Resumo:
Approximate execution is a viable technique for environments with energy constraints, provided that applications are given the mechanisms to produce outputs of the highest possible quality within the available energy budget. This paper introduces a framework for energy-constrained execution with controlled and graceful quality loss. A simple programming model allows developers to structure the computation in different tasks, and to express the relative importance of these tasks for the quality of the end result. For non-significant tasks, the developer can also supply less costly, approximate versions. The target energy consumption for a given execution is specified when the application is launched. A significance-aware runtime system employs an application-specific analytical energy model to decide how many cores to use for the execution, the operating frequency for these cores, as well as the degree of task approximation, so as to maximize the quality of the output while meeting the user-specified energy constraints. Evaluation on a dual-socket 16-core Intel platform using 9 benchmark kernels shows that the proposed framework picks the optimal configuration with high accuracy. Also, a comparison with loop perforation (a well-known compile-time approximation technique), shows that the proposed framework results in significantly higher quality for the same energy budget.
Resumo:
Sensor network nodes exhibit characteristics of both embedded systems and general-purpose systems.A sensor network operating system is a kind of embedded operating system, but unlike a typical embedded operating system, sensor network operatin g system may not be real time, and is constrained by memory and energy constraints. Most sensor network operating systems are based on event-driven approach. Event-driven approach is efficient in terms of time and space.Also this approach does not require a separate stack for each execution context. But using this model, it is difficult to implement long running tasks, like cryptographic operations. A thread based computation requires a separate stack for each execution context, and is less efficient in terms of time and space. In this paper, we propose a thread based execution model that uses only a fixed number of stacks. In this execution model, the number of stacks at each priority level are fixed. It minimizes the stack requirement for multi-threading environment and at the same time provides ease of programming. We give an implementation of this model in Contiki OS by separating thread implementation from protothread implementation completely. We have tested our OS by implementing a clock synchronization protocol using it.
Resumo:
It is anticipated that constrained devices in the Internet of Things (IoT) will often operate in groups to achieve collective monitoring or management tasks. For sensitive and mission-critical sensing tasks, securing multicast applications is therefore highly desirable. To secure group communications, several group key management protocols have been introduced. However, the majority of the proposed solutions are not adapted to the IoT and its strong processing, storage, and energy constraints. In this context, we introduce a novel decentralized and batch-based group key management protocol to secure multicast communications. Our protocol is simple and it reduces the rekeying overhead triggered by membership changes in dynamic and mobile groups and guarantees both backward and forward secrecy. To assess our protocol, we conduct a detailed analysis with respect to its communcation and storage costs. This analysis is validated through simulation to highlight energy gains. The obtained results show that our protocol outperforms its peers with respect to keying overhead and the mobility of members.
RadiaLE: A framework for designing and assessing link quality estimators in wireless sensor networks
Resumo:
Stringent cost and energy constraints impose the use of low-cost and low-power radio transceivers in large-scale wireless sensor networks (WSNs). This fact, together with the harsh characteristics of the physical environment, requires a rigorous WSN design. Mechanisms for WSN deployment and topology control, MAC and routing, resource and mobility management, greatly depend on reliable link quality estimators (LQEs). This paper describes the RadiaLE framework, which enables the experimental assessment, design and optimization of LQEs. RadiaLE comprises (i) the hardware components of the WSN testbed and (ii) a software tool for setting-up and controlling the experiments, automating link measurements gathering through packets-statistics collection, and analyzing the collected data, allowing for LQEs evaluation. We also propose a methodology that allows (i) to properly set different types of links and different types of traffic, (ii) to collect rich link measurements, and (iii) to validate LQEs using a holistic and unified approach. To demonstrate the validity and usefulness of RadiaLE, we present two case studies: the characterization of low-power links and a comparison between six representative LQEs. We also extend the second study for evaluating the accuracy of the TOSSIM 2 channel model.
Resumo:
The frequency and type of agonistic displays involved in male-male encounters should be significantly influenced by the presence of females. Discrete agonistic displays vary in energy expenditure and risk, and therefore should be dependent on available resources. The influence of live females and the scent of females, on the frequency of male agonistic displays was observed in a laboratory terrarium using the field cricket Gryllus bimaculatus. The effect of energy constraints on display frequency was also determined. Half the males were fed a diet high in protein and fet; the other males were fed a lower quality diet, for a 7-11 day period. The frequency of five individual displays and mating frequency were recorded using an Event Recorder and notebook. Each group of males was presented with three experimental conditions, over three days, involving the presence or absence of live females and female scent. The presence of females elicited an increase in all displays except antennation; female scent increased the frequency of antennations, mandible flares and grapples, but to a lesser extent than did live females. The frequency of grapples significantly increased for males fed the high quality diet; however diet did not influence the other displays. The combined influence of diet and condition was significant for mandible flare only. Mating frequency was not influenced by diet. However, the frequency ofthe displays were positively correlated with mating frequency for high quality fed males. Escalated displays involving high costs, such as grapple and mandible flare, increased in frequency when the benefits of winning contests were high in G.bimaculatus. Escalation to grapple behaviour was less evident for males fed the lower quality diet as this imposed energy constraints on high cost displays.
Resumo:
La lithographie et la loi de Moore ont permis des avancées extraordinaires dans la fabrication des circuits intégrés. De nos jours, plusieurs systèmes très complexes peuvent être embarqués sur la même puce électronique. Les contraintes de développement de ces systèmes sont tellement grandes qu’une bonne planification dès le début de leur cycle de développement est incontournable. Ainsi, la planification de la gestion énergétique au début du cycle de développement est devenue une phase importante dans la conception de ces systèmes. Pendant plusieurs années, l’idée était de réduire la consommation énergétique en ajoutant un mécanisme physique une fois le circuit créé, comme par exemple un dissipateur de chaleur. La stratégie actuelle est d’intégrer les contraintes énergétiques dès les premières phases de la conception des circuits. Il est donc essentiel de bien connaître la dissipation d’énergie avant l’intégration des composantes dans une architecture d’un système multiprocesseurs de façon à ce que chaque composante puisse fonctionner efficacement dans les limites de ses contraintes thermiques. Lorsqu’une composante fonctionne, elle consomme de l’énergie électrique qui est transformée en dégagement de chaleur. Le but de ce mémoire est de trouver une affectation efficace des composantes dans une architecture de multiprocesseurs en trois dimensions en tenant compte des limites des facteurs thermiques de ce système.
Resumo:
Extending IPv6 to IEEE 802.15.4-based Low power Wireless Personal Area Networks requires efficient header compression mechanisms to adapt to their limited bandwidth, memory and energy constraints. This paper presents an experimental evaluation of an improved header compression scheme which provides better compression of IPv6 multicast addresses and UDP port numbers compared to existing mechanisms. This scheme outperforms the existing compression mechanism in terms of data throughput of the network and energy consumption of nodes. It enhances throughput by up to 8% and reduces transmission energy of nodes by about 5%.
Resumo:
The influence of a large meridional submarine ridge on the decay of Agulhas rings is investigated with a 1 and 2-layer setup of the isopycnic primitive-equation ocean model MICOM. In the single-layer case we show that the SSH decay of the ring is primarily governed by bottom friction and secondly by the radiation of Rossby waves. When a topographic ridge is present, the effect of the ridge on SSH decay and loss of tracer from the ring is negligible. However, the barotropic ring cannot pass the ridge due to energy and vorticity constraints. In the case of a two-layer ring the initial SSH decay is governed by a mixed barotropic–baroclinic instability of the ring. Again, radiation of barotropic Rossby waves is present. When the ring passes the topographic ridge, it shows a small but significant stagnation of SSH decay, agreeing with satellite altimetry observations. This is found to be due to a reduction of the growth rate of the m = 2 instability, to conversions of kinetic energy to the upper layer, and to a decrease in Rossby-wave radiation. The energy transfer is related to the fact that coherent structures in the lower layer cannot pass the steep ridge due to energy constraints. Furthermore, the loss of tracer from the ring through filamentation is less than for a ring moving over a flat bottom, related to a decrease in propagation speed of the ring. We conclude that ridges like the Walvis Ridge tend to stabilize a multi-layer ring and reduce its decay.
Resumo:
Resonant interactions among equatorial waves in the presence of a diurnally varying heat source are studied in the context of the diabatic version of the equatorial beta-plane primitive equations for a motionless, hydrostatic, horizontally homogeneous and stably stratified background atmosphere. The heat source is assumed to be periodic in time and of small amplitude [i.e., O(epsilon)] and is prescribed to roughly represent the typical heating associated with deep convection in the tropical atmosphere. In this context, using the asymptotic method of multiple time scales, the free linear Rossby, Kelvin, mixed Rossby-gravity, and inertio-gravity waves, as well as their vertical structures, are obtained as leading-order solutions. These waves are shown to interact resonantly in a triad configuration at the O(e) approximation, and the dynamics of these interactions have been studied in the presence of the forcing. It is shown that for the planetary-scale wave resonant triads composed of two first baroclinic equatorially trapped waves and one barotropic Rossby mode, the spectrum of the thermal forcing is such that only one of the triad components is resonant with the heat source. As a result, to illustrate the role of the diurnal forcing in these interactions in a simplified fashion, two kinds of triads have been analyzed. The first one refers to triads composed of a k = 0 first baroclinic geostrophic mode, which is resonant with the stationary component of the diurnal heat source, and two dispersive modes, namely, a mixed Rossby-gravity wave and a barotropic Rossby mode. The other class corresponds to triads composed of two first baroclinic inertio-gravity waves in which the highest-frequency wave resonates with a transient harmonic of the forcing. The integration of the asymptotic reduced equations for these selected resonant triads shows that the stationary component of the diurnal heat source acts as an ""accelerator"" for the energy exchanges between the two dispersive waves through the excitation of the catalyst geostrophic mode. On the other hand, since in the second class of triads the mode that resonates with the forcing is the most energetically active member because of the energy constraints imposed by the triad dynamics, the results show that the convective forcing in this case is responsible for a longer time scale modulation in the resonant interactions, generating a period doubling in the energy exchanges. The results suggest that the diurnal variation of tropical convection might play an important role in generating low-frequency fluctuations in the atmospheric circulation through resonant nonlinear interactions.