930 resultados para Energy Strategy
Resumo:
Abstract is not available.
Resumo:
Includes bibliography.
Resumo:
Summary. Energy saving has been a stated policy objective of the EU since the 1970s. Presently, the 2020 target is a 20% reduction of EU energy consumption in comparison with current projections for 2020. This is one of the headline targets of the European Energy Strategy 2020 but efforts to achieve it remain slow and insufficient. The aim of this paper is to understand why this is happening. Firstly, this paper examines the reasons why public measures promoting energy efficiency are needed and what form these measures should optimally take (§ 1). Fortunately, over the last 20 years, much research has been done into the famous ‘energy efficiency gap’ (or ‘the energy efficiency paradox’), even if more remains to be done. Multiple explanations have been given: market failures, modelling flaws and behavioural obstacles. Each encompasses many complex aspects. Several types of instruments can be adopted to encourage energy efficiency: measures guaranteeing the correct pricing of energy are preferred, followed by taxes or tradable white certificates which in turn are preferred to standards or subsidies. Information programmes are also necessary. Secondly, the paper analyzes the evolution of the different programmes from 2000 onwards (§ 2). This reveals the extreme complexity of the subject. It deals with quite diverse topics: buildings, appliances, public sector, industry and transport. The market for energy efficiency is as diffuse as energy consumption patterns themselves. It is composed of many market actors who demand more efficient provision of energy services, and that suppliers of the necessary goods and know-how deliver this greater efficiency. Consumers in this market include individuals, businesses and governments, and market activities cover all energy-consuming sectors of the economy. Additionally, energy efficiency is the perfect example of a shared competence between the EU and the Member States. Lastly, the legal framework has steadily increased in complexity, and despite the successive energy efficiency programmes used to build this framework, it has become clear that the gap between the target and the results remains. The paper then examines whether the 2012/27/EU Directive adopted to improve the situation could bring better results. It briefly describes the content of this framework Directive, which accompanies and implements the latest energy efficiency programme (§ 3). Although the Directive is technically complex and maintains nonbinding energy efficiency targets, it certainly represents an improvement in several aspects. However, it is also saddled with a multiplicity of exemption clauses and interpretative documents (with no binding value) which weaken its provisions. Furthermore, alone, it will allow the achievement of only about 17.7% of final energy savings by 2020. The implementation process, which is essential, also remains fairly weak. The paper also gives a glimpse of the various EU instruments for financing energy efficiency projects (§ 4). Though useful, they do not indicate a strong priority. Fourthly, the paper tries to analyze the EU’s limited progress so far and gather a few suggestions for improvement. One thing seems to remain useful: targets which can be defined in various ways (§ 5). Basically, all this indicates that the EU energy efficiency strategy has so far failed to reach its targets, lacks coherence and remains ambiguous. In the new Commission’s proposals of 22 January 2014 – intended to define a new climate/energy package in the period from 2020 to 2030 – the approach to energy efficiency remains unclear. This is regrettable. Energy efficiency is the only instrument which allows the EU to reach simultaneously its three targets: sustainability, competitiveness and security. The final conclusion appears thus paradoxical. On the one hand, all existing studies indicate that the decarbonization of the EU economy will be absolutely impossible without some very serious improvements in energy efficiency. On the other hand, in reality energy efficiency has always been treated as a second zone priority. It is imperative to eliminate this contradiction.
Resumo:
Summary. For more than two decades, the development of renewable energy sources (RES) has been an important aim of EU energy policy. It accelerated with the adoption of a 1997 White Paper and the setting a decade later of a 20% renewable energy target, to be reached by 2020. The EU counts on renewable energy for multiple purposes: to diversify its energy supply; to increase its security of supply; and to create new industries, jobs, economic growth and export opportunities, while at the same time reducing greenhouse gas (GHG) emissions. Many expectations rest on its development. Fossil fuels have been critical to the development of industrial nations, including EU Member States, which are now deeply reliant upon coal, oil and gas for nearly every aspect of their existence. Faced with some hard truths, however, the Member States have begun to shelve fossil fuel. These hard truths are as follows: firstly, fossil fuels are a finite resource, sometimes difficult to extract. This means that, at some point, fossil fuels are going to be more difficult to access in Europe or too expensive to use.1 The problem is that you cannot just stop using fossil fuels when they become too expensive; the existing infrastructure is profoundly reliant on fossil fuels. It is thus almost normal that a fierce resistance to change exists. Secondly, fossil fuels contribute to climate change. They emit GHG, which contribute greatly to climate change. As a consequence, their use needs to be drastically reduced. Thirdly, Member States are currently suffering a decline in their own fossil fuel production. This increases their dependence on increasingly costly fossil fuel imports from increasingly unstable countries. This problem is compounded by global developments: the growing share of emerging economies in global energy demand (in particular China and India but also the Middle East) and the development of unconventional oil and gas production in the United States. All these elements endanger the competitiveness of Member States’ economies and their security of supply. Therefore, new indigenous sources of energy and a diversification of energy suppliers and routes to convey energy need to be found. To solve all these challenges, in 2008 the EU put in place a strategy based on three objectives: sustainability (reduction of GHG), competitiveness and security of supply. The adoption of a renewable energy policy was considered essential for reaching these three strategic objectives. The adoption of the 20% renewable energy target has undeniably had a positive effect in the EU on the growth in renewables, with the result that renewable energy sources are steadily increasing their presence in the EU energy mix. They are now, it can be said, an integral part of the EU energy system. However, the necessity of reaching this 20% renewable energy target in 2020, combined with other circumstances, has also engendered in many Member States a certain number of difficulties, creating uncertainties for investors and postponing benefits for consumers. The electricity sector is the clearest example of this downside. Subsidies have become extremely abundant and vary from one Member State to another, compromising both fair competition and single market. Networks encountered many difficulties to develop and adapt. With technological progress these subsidies have also become quite excessive. The growing impact of renewable electricity fluctuations has made some traditional power plants unprofitable and created disincentives for new investments. The EU does clearly need to reassess its strategy. If it repeats the 2008 measures it will risk to provoke increased instability and costs.
Resumo:
Shipping list no.: 2001-0300-P.
Resumo:
"February 1991."
Resumo:
The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.