854 resultados para Energetic Costs
Resumo:
Parasites have been suggested to influence many aspects of host behaviour. Some of these effects may be mediated via their impact on host energy budgets. This impact may include effects on both energy intake and absorption as well as components of expenditure, including resting metabolic rate (RMR) and activity (e.g. grooming). Despite their potential importance, the energy costs of parasitism have seldom been directly quantified in a field setting. Here we pharmacologically treated female Cape ground squirrels (Xerus inauris) with anti-parasite drugs and measured the change in body composition, the daily energy expenditure (DEE) using doubly labelled water, the RMR by respirometry and the proportions of time spent looking for food, feeding, moving and grooming. Post-treatment animals gained an average 19 g of fat or approximately 25 kJ d(-1). DEE averaged 382 kJ d-1 prior to and 375 kJ d-1 post treatment (p> 0.05). RMR averaged 174 kJ d-1 prior to and 217 kJ d-1 post treatment (p
Resumo:
Different reproductive strategies of males and females may lead to the evolution of differences in their energetic costs of reproduction, overall energetic requirements and physiological performances. Sexual dimorphism is often associated with costly behaviours (e.g. large males might have a competitive advantage in fighting, which is energetically expensive). However, few studies of mammals have directly compared the energy costs of reproductive activities between sexes. We compared the daily energy expenditure (DEE) and resting metabolic rate (RMR) of males and females of two species of mole-rat, Bathyergus janetta and Georychus capensis (the former is sexually dimorphic in body size and the latter is not) during a period of intense digging when males seek females. We hypothesized that large body size might be indicative of greater digging or fighting capabilities, and hence greater mass-independent DEE values in males of the sexually dimorphic species. In contrast to this prediction, although absolute values of DEE were greater in B. janetta males, mass-independent values were not. No differences were apparent between sexes in G. capensis. By comparison, although RMR values were greater in B. janetta than G. capensis, no differences were apparent between the sexes for either species. The energy cost of dimorphism is most likely to be the cost of maintenance of a large body size, and not the cost of behaviours performed when an individual is large.
Resumo:
In this review, we summarize the energetic and physiological correlates of prey handling and ingestion in lizards and snakes. There were marked differences in the magnitude of aerobic metabolism during prey handling and ingestion between these two groups, although they show a similar pattern of variation as a function of relative prey mass. For lizards, the magnitude of aerobic metabolism during prey handling and ingestion also varied as a function of morphological specializations for a particular habitat, prey type, and behavior. For snakes, interspecific differences in aerobic metabolism during prey handling seem to be correlated with adaptations for prey capture (venom injection vs. constriction). During ingestion by snakes, differences in aerobic metabolism might be due to differences in cranial morphology, although allometric effects might be a potentially confounded effect. Anaerobic metabolism is used for prey handling and ingestion, but its relative contribution to total ATP production seems to be more pronounced in snakes than in lizards. The energetic costs of prey handling and ingestion are trivial for both groups and cannot be used to predict patterns of prey-size selection. For lizards, it seems that morphological and ecological factors set the constraints on prey handling and ingestion. For snakes, besides these two factors, the capacity of the cardio-respiratory system may also be an important factor constraining the capacity for prey handling and ingestion. © 2001 Elsevier B.V.
Resumo:
Exclusive paternal care is the rarest form of parental investment in nature and theory predicts that the maintenance of this behavior depends on the balance between costs and benefits to males. Our goal was to assess costs of paternal care in the harvestman Iporangaia pustulosa, for which the benefits of this behavior in terms of egg survival have already been demonstrated. We evaluated energetic costs and mortality risks associated to paternal egg-guarding in the field. We quantified foraging activity of males and estimated how their body condition is influenced by the duration of the caring period. Additionally, we conducted a one-year capture-mark-recapture study and estimated apparent survival probabilities of caring and non-caring males to assess potential survival costs of paternal care. Our results indicate that caring males forage less frequently than non-caring individuals (males and females) and that their body condition deteriorates over the course of the caring period. Thus, males willing to guard eggs may provide to females a fitness-enhancing gift of cost-free care of their offspring. Caring males, however, did not show lower survival probabilities when compared to both non-caring males and females. Reduction in mortality risks as a result of remaining stationary, combined with the benefits of improving egg survival, may have played an important and previously unsuspected role favoring the evolution of paternal care. Moreover, males exhibiting paternal care could also provide an honest signal of their quality as offspring defenders, and thus female preference for caring males could be responsible for maintaining the trait.
Resumo:
Magnitudes and patterns of energy expenditure in animal contests are seldom measured, but can be critical for predicting contest dynamics and understanding the evolution of ritualized fighting behaviour. In the sierra dome spider, males compete for sexual access to females and their webs. They show three distinct phases of fighting behaviour, escalating from ritualized noncontact display (phase 1) to cooperative wrestling (phase 2), and finally to unritualized, potentially fatal fighting (phase 3). Using CO2 respirometry, we estimated energetic costs of male-male combat in terms of mean and maximum metabolic rates and the rate of increase in energy expenditure. We also investigated the energetic consequences of age and body mass, and compared fighting metabolism to metabolism during courtship. All three phases involved mean energy expenditures well above resting metabolic rate (3.5 X, 7.4 X and 11.5 X). Both mean and maximum energy expenditure became substantially greater as fights escalated through successive phases. The rates of increase in energy use during phases 2 and 3 were much higher than in phase 1. In addition, age and body mass affected contest energetics. These results are consistent with a basic prediction of evolutionarily stable strategy contest models, that sequences of agonistic behaviours should be organized into phases of escalating energetic costs. Finally, higher energetic costs of escalated fighting compared to courtship provide a rationale for first-male sperm precedence in this spider species. (C) 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The recent development of the pop-up satellite archival tag (PSAT) has allowed the collection of information on a tagged animal, such as geolocation, pressure (depth), and ambient water temperature. The success of early studies, where PSATs were used on pelagic fishes, has spurred increasing interest in the use of these tags on a large variety of species and age groups. However, some species and age groups may not be suitable candidates for carrying a PSAT because of the relatively large size of the tag and the consequent energy cost to the study animal. We examined potential energetic costs to carrying a tag for the cownose ray (Rhinoptera bonasus). Two forces act on an animal tagged with a PSAT: lift from the PSATs buoyancy and drag as the tag is moved through the water column. In a freshwater flume, a spring scale measured the total force exerted by a PSAT at flume velocities from 0.00 to 0.60 m/s. By measuring the angle of deflection of the PSAT at each velocity, we separated total force into its constituent forces — lift and drag. The power required to carry a PSAT horizontally through the water was then calculated from the drag force and velocity. Using published metabolic rates, we calculated the power for a ray of a given size to swim at a specified velocity (i.e., its swimming power). For each velocity, the power required to carry a PSAT was compared to the swimming power expressed as a percentage, %TAX (Tag Altered eXertion). A %TAX greater than 5% was felt to be energetically significant. Our analysis indicated that a ray larger than 14.8 kg can carry a PSAT without exceeding this criterion. This method of estimating swimming power can be applied to other species and would allow a researcher to decide the suitability of a given study animal for tagging with a PSAT.
Resumo:
After committing to an action, a decision-maker can change their mind to revise the action. Such changes of mind can even occur when the stream of information that led to the action is curtailed at movement onset. This is explained by the time delays in sensory processing and motor planning which lead to a component at the end of the sensory stream that can only be processed after initiation. Such post-initiation processing can explain the pattern of changes of mind by asserting an accumulation of additional evidence to a criterion level, termed change-of-mind bound. Here we test the hypothesis that physical effort associated with the movement required to change one's mind affects the level of the change-of-mind bound and the time for post-initiation deliberation. We varied the effort required to change from one choice target to another in a reaching movement by varying the geometry of the choice targets or by applying a force field between the targets. We show that there is a reduction in the frequency of change of mind when the separation of the choice targets would require a larger excursion of the hand from the initial to the opposite choice. The reduction is best explained by an increase in the evidence required for changes of mind and a reduced time period of integration after the initial decision. Thus the criteria to revise an initial choice is sensitive to energetic costs.
Resumo:
The high energetic costs of building and maintaining large brains are thought to constrain encephalization. The 'expensive-tissue hypothesis' (ETH) proposes that primates (especially humans) overcame this constraint through reduction of another metabolically expensive tissue, the gastrointestinal tract. Small guts characterize animals specializing on easily digestible diets. Thus, the hypothesis may be tested via the relationship between brain size and diet quality. Platyrrhine primates present an interesting test case, as they are more variably encephalized than other extant primate clades (excluding Hominoidea). We find a high degree of phylogenetic signal in the data for diet quality, endocranial volume and body size. Controlling for phylogenetic effects, we find no significant correlation between relative diet quality and relative endocranial volume. Thus, diet quality fails to account for differences in platyrrhine encephalization. One taxon, in particular, Brachyteles, violates predictions made by ETH in having a large brain and low-quality diet. Dietary reconstructions of stem platyrrhines further indicate that a relatively high-quality diet was probably in place prior to increases in encephalization. Therefore, it is unlikely that a shift in diet quality was a primary constraint release for encephalization in platyrrhines and, by extrapolation, humans.
Resumo:
Fecundity, reproductive effort (estimated both from production measurements and from physiological data), the energetic costs of reproduction and the reproductive value of different size classes were measured for mussels at different sites and related to age and to tissue weight. Variability between sites was considerable and differences as great as 10 x were recorded between minimum and maximum values for egg production, reproductive effort and reproductive value. However, similarities between mussels from different sites were also apparent, as regards egg size, the estimated metabolic costs of egg production (based on measurements of oxygen consumption), the relationship (isometric) between egg production and body size, the fact of an increase in reproductive effort with increase in size, and the age at which maximum residual reproductive values was expressed. These relationships are discussed in terms of the fundamental reproductive strategy of the species and the degree of environmental stress imposed on the mussels at the different sites.
Resumo:
Energetic costs of fighting, such as high lactate or low glucose, have been shown in a range of species to correlate with the decisions made by each opponent, particularly the decision by one opponent, the 'loser', to end the fight by 'giving up'. Studies based on complete fights of differing duration, however, do not provide information on the changes in the physiological correlates of fighting that may take place during the course of the encounter, or how these changes may influence the capability and decisions of the contestants. We interrupted fights between hermit crabs, Pagurus bernhardus, at specific points, and related energy status to the preceding activities. Costs rose quickly with a rapid accumulation of lactic acid in attackers and declining muscular glycogen in defenders. Changes in physiological status appeared much earlier than the changes in behaviour that they may have caused. Furthermore, some physiological changes might have been an effect, rather than the cause, of fight decisions. (c) 2005 The Association for the Study of Animal Behaviour Published by Elsevier Ltd. All rights reserved.
Resumo:
The ways in which fish use space in nature are described, distinguishing between movements within a home range, dispersal and directed migration, as are the mechanisms that determine how fish use space. The external stimuli to which fish respond, how they use these cues to find their way around and the role of hormones in migration are also covered. An account is then given of how movement and orientation change with age, the evidence for inherited differences in these aspects of behaviour and environmental effects on development of space use patterns. The benefits that accrue to fish from moving in particular ways are described, as are adverse consequences of such movements, in the form of energetic costs and exposure to predators and pathogens. The ways in which benefits and costs are balanced against each other are discussed, with special reference to diurnal vertical migration. Although cultured fish usually inhabit confined spaces, their natural patterns of orientation and movement can cause a number of problems in aquaculture and some of these are described. Such problems are amenable to biological solutions and these are considered in the final section of this chapter, which also looks at the potential for using what is known about how fish move about to improve the effectiveness of general husbandry practices.
Resumo:
The global aim of this thesis was to evaluate and assess the effects of a pesticide (dimethoate) and a metal (nickel), as model chemicals, within different organization levels, starting at the detoxification pathways (enzymatic biomarkers) and energy costs associated (energy content quantification, energy consumption and CEA) along with the physiological alterations at the individual and population level (mortality), leading to a metabolomic analysis (using liquid 1H-NMR) and finally a gene expression analysis (transcriptome and RT-qPCR analysis). To better understand potential variations in response to stressors, abiotic factors were also assessed in terrestrial isopods such as temperature, soil moisture and UV radiation. The evaluation performed using biochemical biomarkers and energy related parameters showed that increases in temperature might negatively affect the organisms by generating oxidative stress. It also showed that this species is acclimated to environments with low soil moisture, and that in high moisture scenarios there was a short gap between the optimal and adverse conditions that led to increased mortality. As for UV-R, doses nowadays present have shown to induce significant negative impact on these organisms. The long-term exposure to dimethoate showed that besides the neurotoxicity resulting from acetylcholinesterase inhibition, this stressor also caused oxidative stress. This effect was observed for both concentrations used (recommended field dose application and a below EC50 value) and that its combination with different temperatures (20ºC and 25ºC) showed different response patterns. It was also observed that dimethoate’s degradation rate in soils was higher in the presence of isopods. In a similar study performed with nickel, oxidative stress was also observed. But, in the case of this stressor exposure, organisms showed a strategy where the energetic costs necessary for detoxification (biomarkers) seemed to be compensated by positive alterations in the energy related parameters. In this work we presented for the first time a metabolomic profile of terrestrial isopods exposed to stressors (dimethoate and niquel), since until the moment only a previous study was performed on a metabolomic evaluation in nonexposed isopods. In the first part of the study we identify 24 new metabolites that had not been described previously. On the second part of the study a metabolomic profile variation of abstract non-exposed organism throughout the exposure was presented and finally the metabolomic profile of organisms exposed to dimethoate and nickel. The exposure to nickel suggested alteration in growth, moult, haemocyanin and glutathione synthesis, energy pathways and in osmoregulation. As for the exposure to dimethoate alterations in osmoregulation, energy pathways, moult and neurotransmission were also suggested. In this work it was also presented the first full body transcriptome of a terrestrial isopod from the species Porcellionides pruinosus, which will complement the scarce information available for this group of organisms. This transcriptome also served as base for a RNA-Seq and a RT-qPCR analysis. The results of the RNA-Seq analysis performed in organisms exposed to nickel showed that this stressor negatively impacted at the genetic and epigenetic levels, in the trafficking, storage and elimination of metals, generates oxidative stress, inducing neurotoxicity and also affecting reproduction. These results were confirmed through RT-qPCR. As for the impact of dimethoate on these organisms it was only accessed through RT-qPCR and showed oxidative stress, an impact in neurotransmission, in epigenetic markers, DNA repair and cell cycle impairment. This study allowed the design of an Adverse Outcome Pathway draft that can be used further on for legislative purposes.
Resumo:
Enhanced biological phosphorus removal (EBPR) is the most economic and sustainable option used in wastewater treatment plants (WWTPs) for phosphorus removal. In this process it is important to control the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), since EBPR deterioration or failure can be related with the proliferation of GAOs over PAOs. This thesis is focused on the effect of operational conditions (volatile fatty acid (VFA) composition, dissolved oxygen (DO) concentration and organic carbon loading) on PAO and GAO metabolism. The knowledge about the effect of these operational conditions on EBPR metabolism is very important, since they represent key factors that impact WWTPs performance and sustainability. Substrate competition between the anaerobic uptake of acetate and propionate (the main VFAs present in WWTPs) was shown in this work to be a relevant factor affecting PAO metabolism, and a metabolic model was developed that successfully describes this effect. Interestingly, the aerobic metabolism of PAOs was not affected by different VFA compositions, since the aerobic kinetic parameters for phosphorus uptake, polyhydroxyalkanoates (PHAs) degradation and glycogen production were relatively independent of acetate or propionate concentration. This is very relevant for WWTPs, since it will simplify the calibration procedure for metabolic models, facilitating their use for full-scale systems. The DO concentration and aerobic hydraulic retention time (HRT) affected the PAO-GAO competition, where low DO levels or lower aerobic HRT was more favourable for PAOs than GAOs. Indeed, the oxygen affinity coefficient was significantly higher for GAOs than PAOs, showing that PAOs were far superior at scavenging for the often limited oxygen levels in WWTPs. The operation of WWTPs with low aeration is of high importance for full-scale systems, since it decreases the energetic costs and can potentially improve WWTP sustainability. Extended periods of low organic carbon load, which are the most common conditions that exist in full-scale WWTPs, also had an impact on PAO and GAO activity. GAOs exhibited a substantially higher biomass decay rate as compared to PAOs under these conditions, which revealed a higher survival capacity for PAOs, representing an advantage for PAOs in EBPR processes. This superior survival capacity of PAOs under conditions more closely resembling a full-scale environment was linked with their ability to maintain a residual level of PHA reserves for longer than GAOs, providing them with an effective energy source for aerobic maintenance processes. Overall, this work shows that each of these key operational conditions play an important role in the PAO-GAO competition and should be considered in WWTP models in order to improve EBPR processes.
Resumo:
Pharmaceuticals and personal care products (PPCPs) are widely used on a daily basis. After their usage they reach the wastewater treatment plants (WWTPs). These compounds have different physico-chemical characteristics, which makes them difficult to completely remove in the WWTPs, througth conventional treatments. Currently, there is no legislation regarding PPCPs thresholds in effluent discharge. But, even at vestigial concentrations, these compounds enclose environmental risks due to, e.g., endocrine disruption potential. There is a need of alternative techniques for their removal in WWTPs. The main goal of this work was to assess the use of electrodialytic (ED) process to remove PPCPs from the effluent to be discharged. A two-compartment ED cell was used testing (i) the effluent position in the cell (anode and cathode compartment); (ii) the use of anion (AEM) and cation exchange membrane (CEM); (iii) the treatment period (6, 12 and 24 hours); (iv) effluent recirculation and current steps; (v) the feasibility of sequential treatments. Phosphorus (P) removal from effluent and energetic costs associated to the process were also evaluated. Five PPCPs were studied – caffeine (CAF), bisphenol A (BPA), 17 β-estradiol (E2), ethinyl estradiol (EE2) and oxybenzone (MBPh). The ED process showed to be effective in the removal when effluent is in the anode compartment. Oxidation is suggested to be the main removal process, which was between 88 and 96%, for all the compounds, in 6 hours. Nevertheless, the presence of intermediates and/or by-products was also observed in some cases. Effluent recirculation should have a retention time in the ED cell big enough to promote removal whereas the current steps (effluent in anode compartment) slightly increased removal efficiencies (higher than 80% for all PPCPs). The sequential set of ED treatment (effluent in anode compartment) showed to be effective during both periods with a removal percentage between 80 and 95% and 73 to 88% in the case of AEM and CEM, respectively. Again, the main removal process is strongly suggested to be oxidation in the anode compartment. However, there was an increase of BOD5 and COD, which might be explained by effluent spiking, these parameters limiting the effluent discharge. From these treatments, the use of AEM, enhanced the P removal from effluent to minimize risk of eutrophication. Energetic costs of the best set-up (6 hours) are approximately 0,8€/m3 of wastewater, a value considered low, attending to the prices of other treatment processes.
Resumo:
Les états mentaux réfèrent à la qualité de la capacité d’un individu à élaborer mentalement et à s’ouvrir à son expérience subjective dans l’ici et maintenant. Les divers états mentaux varient quant à la disponibilité des ressources représenta-tionnelles et affectives pouvant être activées afin d’organiser l’expérience vécue, ainsi que dans leur utilisation de stratégies défensives et d’autorégulation. La présente thèse avait pour objectifs 1) d’approfondir l’évaluation des états mentaux par le développement et la validation d’un instrument pratique, le Mental States Task (MST), développé afin d’évaluer différentes qualités d’états mentaux et 2) d’investiguer les propriétés psychiques et les répercussions des différents états mentaux. Le premier article avait pour but de valider le MST. La première partie de l’article est consacrée à la validation du MST dans sa version francophone, et la deuxième partie porte sur la traduction et la validation du MST dans sa version anglophone. Les résultats fournissent des indices convaincants de validité et de fidélité, ainsi qu’une valeur prédictive adéquate. Le MST semble représenter de façon conforme autant les états mentaux de bas niveau que de haut niveau selon le continuum de réflexivité. De fait, les états mentaux de bas niveau et de haut niveau ont été respectivement associés à un large spectre de construits négatifs/immatures et positifs/matures. De plus, chaque état mental évalué par le MST semble posséder des propriétés particulières relativement aux processus mentaux et émotionnels utilisés pour traiter l’expérience. Le second article avait pour objectif d’approfondir l’étude de la valeur prédictive du MST par le biais de l’évaluation des coûts psychiques engendrés par les différentes qualités d’états mentaux—coûts présumés dépendant des ressources représentationnelles disponibles et du type de stratégies de régulation utilisées. Les résultats suggèrent que les états mentaux de bas niveau génèrent des coûts énergétiques plus élevés, ayant pour répercussion d’entraîner subséquemment un effet de déplétion du moi. Inversement, les états mentaux de haut niveau engendrent de moindres coûts, protégeant contre un état subséquent de déplétion du moi. Le MST s’est avéré être un outil efficace d’évaluation des répercussions énergétiques occasionnées par les divers états mentaux.