924 resultados para Endoplasmic Reticulum, Rough
Resumo:
The specific activity and content of cytochrome oxidase in the rough endoplasmic reticulum--mitochondrion complex are higher than in the mitochondrial fraction. Radiolabelling studies with the use of hepatocytes and isolated microsomal and rough endoplasmic reticulum--mitochondrion fractions, followed by immunoprecipitation with anti-(cytochrome oxidase) antibody, reveal that the nuclear-coded cytoplasmic subunits of cytochrome oxidase are preferentially synthesized in the latter fraction. The results have a bearing on the mechanism of transport of these subunits into mitochondria.
Resumo:
Proteins with RER-specific signal sequences are cotranslationally translocated across the rough endoplasmic reticulum through a proteinaceous channel composed of oligomers of the Sec61 complex. The Sec61 complex also binds ribosomes with high affinity. The dual function of the Sec61 complex necessitates a mechanism to prevent signal sequence-independent binding of ribosomes to the translocation channel. We have examined the hypothesis that the signal recognition particle (SRP) and the nascent polypeptide-associated complex (NAC), respectively, act as positive and negative regulatory factors to mediate the signal sequence-specific attachment of the ribosome-nascent chain complex (RNC) to the translocation channel. Here, SRP-independent translocation of a nascent secretory polypeptide was shown to occur in the presence of endogenous wheat germ or rabbit reticulocyte NAC. Furthermore, SRP markedly enhanced RNC binding to the translocation channel irrespective of the presence of NAC. Binding of RNCs, but not SRP-RNCs, to the Sec61 complex is competitively inhibited by 80S ribosomes. Thus, the SRP-dependent targeting pathway provides a mechanism for delivery of RNCs to the translocation channel that is not inhibited by the nonselective interaction between the ribosome and the Sec61 complex.
Resumo:
The endoplasmic reticulum (ER) and the Golgi apparatus are organelles that produce, modify and transport proteins and lipids and regulate Ca2+ environment within cells. Structurally they are composed of sheets and tubules. Sheets may take various forms: intact, fenestrated, single or stacked. The ER, including the nuclear envelope, is a single continuous network, while the Golgi shows only some level of connectivity. It is often unclear, how different morphologies correspond to particular functions. Previous studies indicate that the structures of the ER and Golgi are dynamic and regulated by fusion and fission events, cytoskeleton, rate of protein synthesis and secretion, and specific structural proteins. For example, many structural proteins shaping tubular ER have been identified, but sheet formation is much more unclear. In this study, we used light and electron microscopy to study morphological changes of the ER and Golgi in mammalian cells. The proportion, type, location and dynamics of ER sheets and tubules were found to vary in a cell type or cell cycle stage dependent manner. During interphase, ER and Golgi structures were demonstrated to be regulated by p37, a cofactor of the fusion factor p97, and microtubules, which also affected the localization of the organelles. Like previously shown for the Golgi, the ER displayed a tendency for fenestration and tubulation during mitosis. However, this shape change did not result in ER fragmentation as happens to Golgi, but a continuous network was retained. The activity of p97/p37 was found to be important for the reassembly of both organelles after mitosis. In EM images, ER sheet membranes appear rough, since they contain attached ribosomes, whereas tubular membranes appear smooth. Our studies revealed that structural changes of the ER towards fenestrated and tubular direction correlate with loss of ER-bound ribosomes and vice versa. High and low curvature ER membranes have a low and high density of ribosomes, respectively. To conclude, both ER and Golgi architecture depend on fusion activity of p97/p37. ER morphogenesis, particularly of the sheet shape, is intimately linked to the density of membrane bound ribosomes.
Resumo:
Rubella virus E1 glycoprotein normally complexes with E2 in the endoplasmic reticulum (ER) to form a heterodimer that is transported to and retained in the Golgi complex. In a previous study, we showed that in the absence of E2, unassembled E1 subunits accumulate in a tubular pre-Golgi compartment whose morphology and biochemical properties are distinct from both rough ER and Golgi. We hypothesized that this compartment corresponds to hypertrophied ER exit sites that have expanded in response to overexpression of E1. In the present study we constructed BHK cells stably expressing E1 protein containing a cytoplasmically disposed epitope and isolated the pre-Golgi compartment from these cells by cell fractionation and immunoisolation. Double label indirect immunofluorescence in cells and immunoblotting of immunoisolated tubular networks revealed that proteins involved in formation of ER-derived transport vesicles, namely p58/ERGIC 53, Sec23p, and Sec13p, were concentrated in the E1-containing pre-Golgi compartment. Furthermore, budding structures were evident in these membrane profiles, and a highly abundant but unknown 65-kDa protein was also present. By comparison, marker proteins of the rough ER, Golgi, and COPI vesicles were not enriched in these membranes. These results demonstrate that the composition of the tubular networks corresponds to that expected of ER exit sites. Accordingly, we propose the name SEREC (smooth ER exit compartment) for this structure.
Resumo:
Autocrine motility factor receptor (AMF-R) is a cell surface receptor that is also localized to a smooth subdomain of the endoplasmic reticulum, the AMF-R tubule. By postembedding immunoelectron microscopy, AMF-R concentrates within smooth plasmalemmal vesicles or caveolae in both NIH-3T3 fibroblasts and HeLa cells. By confocal microscopy, cell surface AMF-R labeled by the addition of anti-AMF-R antibody to viable cells at 4°C exhibits partial colocalization with caveolin, confirming the localization of cell surface AMF-R to caveolae. Labeling of cell surface AMF-R by either anti-AMF-R antibody or biotinylated AMF (bAMF) exhibits extensive colocalization and after a pulse of 1–2 h at 37°C, bAMF accumulates in densely labeled perinuclear structures as well as fainter tubular structures that colocalize with AMF-R tubules. After a subsequent 2- to 4-h chase, bAMF is localized predominantly to AMF-R tubules. Cytoplasmic acidification, blocking clathrin-mediated endocytosis, results in the essentially exclusive distribution of internalized bAMF to AMF-R tubules. By confocal microscopy, the tubular structures labeled by internalized bAMF show complete colocalization with AMF-R tubules. bAMF internalized in the presence of a 10-fold excess of unlabeled AMF labels perinuclear punctate structures, which are therefore the product of fluid phase endocytosis, but does not label AMF-R tubules, demonstrating that bAMF targeting to AMF-R tubules occurs via a receptor-mediated pathway. By electron microscopy, bAMF internalized for 10 min is located to cell surface caveolae and after 30 min is present within smooth and rough endoplasmic reticulum tubules. AMF-R is therefore internalized via a receptor-mediated clathrin-independent pathway to smooth ER. The steady state localization of AMF-R to caveolae implicates these cell surface invaginations in AMF-R endocytosis.
Resumo:
The Bcl-2-associated athanogene (BAG) family is an evolutionarily conserved, multifunctional group of cochaperones that perform diverse cellular functions ranging from proliferation to growth arrest and cell death in yeast, in mammals, and, as recently observed, in plants. The Arabidopsis genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. In the present study we show that an Arabidopsis BAG, AtBAG7, is a uniquely localized endoplasmic reticulum (ER) BAG that is necessary for the proper maintenance of the unfolded protein response (UPR). AtBAG7was shown to interact directly in vivo with themolecular chaperone, AtBiP2, by bimolecular fluorescence complementation assays, and the interaction was confirmed by yeast two-hybrid assay. Treatment with an inducer of UPR, tunicamycin, resulted in accelerated cell death of AtBAG7-null mutants. Furthermore, AtBAG7 knockouts were sensitive to known ER stress stimuli, heat and cold. In these knockouts heat sensitivity was reverted successfully to the wild-type phenotype with the addition of the chemical chaperone, tauroursodexycholic acid (TUDCA). Real-time PCR of ER stress proteins indicated that the expression of the heat-shock protein, AtBiP3, is selectively up-regulated in AtBAG7-null mutants upon heat and cold stress. Our results reveal an unexpected diversity of the plant's BAG gene family and suggest that AtBAG7 is an essential component of the UPR during heat and cold tolerance, thus confirming the cytoprotective role of plant BAGs.
Resumo:
Proteasomes are complex multisubunit proteases which play a critical role in intracellular proteolysis. Immunoproteasomes, which contain three c-interferon-inducible subunits, are a subset of proteasomes which have a specialized function in antigen processing for presentation by the MHC class I pathway. Two of the c-interferon inducible subunits, LMP2 and LMP7, are encoded within the MHC class II region adjacent to the two TAP (transporter associated with antigen presentation) genes. We have investigated the localization of immunoproteasomes using monoclonal antibodies to LMP2 and LMP7. Immunoproteasomes were strongly enriched around the endoplasmic reticulum as judged by double-immuno¯uorescence experiments with anticalreticulin antibodies, but were also present in the nucleus and throughout the cytosol. In contrast, proteasome subunit C2, which is present in all proteasomes, was found to be evenly distributed throughout the cytoplasm and in the nucleus, as was the delta subunit, which is replaced by LMP2 in immunoproteasomes. c-Interferon increased the level of immunoproteasomes, but had no effect on their distribution. Our results provide the ®rst direct evidence that immunoproteasomes are strongly enriched at the endoplasmic reticulum, where they may be located close to the TAP transporter to provide efficient transport of peptides into the lumen of the endoplasmic recticulum for association with MHC class I molecules.
Resumo:
Endoplasmatic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in trimming of peptides to an optimal length for presentation by major histocompatibility complex (MHC) class I molecules. Polymorphisms in ERAP1 have been associated with chronic inflammatory diseases, including ankylosing spondylitis (AS) and psoriasis, and subsequent in vitro enzyme studies suggest distinct catalytic properties of ERAP1 variants. To understand structure-activity relationships of this enzyme we determined crystal structures in open and closed states of human ERAP1, which provide the first snapshots along a catalytic path. ERAP1 is a zinc-metallopeptidase with typical H-E-X-X-H-(X)18-E zinc binding and G-A-M-E-N motifs characteristic for members of the gluzincin protease family. The structures reveal extensive domain movements, including an active site closure as well as three different open conformations, thus providing insights into the catalytic cycle. A K 528R mutant strongly associated with AS in GWAS studies shows significantly altered peptide processing characteristics, which are possibly related to impaired interdomain interactions.
Resumo:
Analysis of proteins of smooth endoplasmic reticulum (SER) of Leydig cells from immature and admit rats by two-dimensional polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of several new proteins in the adult rats. Administration of human chorionic gonadotropin to immature rats for ten days also resulted in a significant increase as well as the appearance of several new proteins. The general pattern of SDS-PAGE analysis of the SER proteins of Leydig cells resembled that of the adult rat. SDS-PAGE analysis of the SER proteins of Leydig cells from adult rats following deprivation of endogenous luteinizing hormone by administration of antiserum to ovine luteinizing hormone resulted in a pattern which to certain extent resembled that of an immature I at. Western Blot analysis of luteinizing hormone antiserum treated rat Leydig cell proteins revealed a decrease in the 17-alpha-hydroxylase compared to the control. These results provide biochemical evidence for the suggestion that one of the main functions of luteinizing hormone is the control of biogenesis and/or turnover SER of Leydig cells in the rat.
Resumo:
Approximately 30% of plant nuclear genes appear to encode proteins targeted to the plastids or endoplasmic reticulum (ER). The signals that direct proteins into these compartments are diverse in sequence, but, on the basis of a limited number of tests in heterologous systems, they appear to be functionally conserved across species. To further test the generality of this conclusion, we tested the ability of two plastid transit peptides and an ER signal peptide to target green fluorescent protein (GFP) in 12 crops, including three monocots (barley, sugarcane, wheat) and nine dicots (Arabidopsis, broccoli, cabbage, carrot, cauliflower, lettuce, radish, tobacco, turnip). In all species, transient assays following microprojectile bombardment or vacuum infiltration using Agrobacterium showed that the plastid transit peptides from tomato DCL (defective chloroplast and leaves) and tobacco RbcS [ribulose bisphosphate carboxylase (Rubisco) small subunit] genes were effective in targeting GFP to the leaf plastids. GFP engineered as a fusion to the N-terminal ER signal peptide from Arabidopsis basic chitinase and a C-terminal HDEL signal for protein retention in the ER was accumulated in the ER of all species. The results in tobacco were confirmed in stably transformed cells. These signal sequences should be useful to direct proteins to the plastid stroma or ER lumen in diverse plant species of biotechnological interest for the accumulation of particular recombinant proteins or for the modification of particular metabolic streams.
Resumo:
This thesis clarifies important molecular pathways that are activated during the cell death observed in Huntington’s disease. Huntington’s disease is one of the most common inherited neurodegenerative diseases, which is primarily inherited in an autosomal dominant manner. HD is caused by an expansion of CAG repeats in the first exon of the IT15 gene. IT15 encodes the production of a Huntington’s disease protein huntingtin. Mutation of the IT15 gene results in a long stretch of polyQ residues close to the amino-terminal region of huntingtin. Huntington’s disease is a fatal autosomal neurodegenerative disorder. Despite the current knowledge of HD, the precise mechanism behind the selective neuronal death, and how the disease propagates, still remains an enigma. The studies mainly focused on the control of endoplasmic reticulum (ER) stress triggered by the mutant huntingtin proteins. The ER is a delicate organelle having essential roles in protein folding and calcium regulation. Even the slightest perturbations on ER homeostasis are effective enough to trigger ER stress and its adaptation pathways, called unfolded protein response (UPR). UPR is essential for cellular homeostasis and it adapts ER to the changing environment and decreases ER stress. If adaptation processes fail and stress is excessive and prolonged; irreversible cell death pathways are engaged. The results showed that inhibition of ER stress with chemical agents are able to decrease cell death and formation of toxic cell aggregates caused by mutant huntingtin proteins. The study concentrated also to the NF-κB (nuclear factor-kappaB) pathway, which is activated during ER stress. NF-κB pathway is capable to regulate the levels of important cellular antioxidants. Cellular antioxidants provide a first line of defence against excess reactive oxygen species. Excess accumulation of reactive oxygen species and subsequent activation of oxidative stress damages motley of vital cellular processes and induce cell degeneration. Data showed that mutant huntingtin proteins downregulate the expression levels of NF-κB and vital antioxidants, which was followed by increased oxidative stress and cell death. Treatment with antioxidants and inhibition of oxidative stress were able to counteract these adverse effects. In addition, thesis connects ER stress caused by mutant huntingtin to the cytoprotective autophagy. Autophagy sustains cellular balance by degrading potentially toxic cell proteins and components observed in Huntington’s disease. The results revealed that cytoprotective autophagy is active at the early points (24h) of ER stress after expression of mutant huntingtin proteins. GADD34 (growth arrest and DNA damage-inducible gene 34), which is previously connected to the regulation of translation during cell stress, was shown to control the stimulation of autophagy. However, GADD34 and autophagy were downregulated at later time points (48h) during mutant huntingtin proteins induced ER stress, and subsequently cell survival decreased. Overexpression GADD34 enhanced autophagy and decreased cell death, indicating that GADD34 plays a critical role in cell protection. The thesis reveales new interesting data about the neuronal cell death pathways seen in Huntington’s disease, and how cell degeneration is partly counteracted by various therapeutic agents. Expression of mutant huntingtin proteins is shown to alter signaling events that control ER stress, oxidative stress and autophagy. Despite that Huntington’s disease is mainly an untreatable disorder; these findings offer potential targets and neuroprotective strategies in designing novel therapies for Huntington’s disease.
Resumo:
The present study analyses the traffic of Hsp150 fusion proteins through the endoplasmic reticulum (ER) of yeast cells, from their post-translational translocation and folding to their exit from the ER via a selective COPI-independent pathway. The reporter proteins used in the present work are: Hsp150p, an O-glycosylated natural secretory protein of Saccharomyces cerevisiae, as well as fusion proteins consisting of a fragment of Hsp150 that facilitates in the yeast ER proper folding of heterologous proteins fused to it. It is thought that newly synthesized polypeptides are kept in an unfolded form by cytosolic chaperones to facilitate the post-translational translocation across the ER membrane. However, beta-lactamase, fused to the Hsp150 fragment, folds in the cytosol into bioactive conformation. Irreversible binding of benzylpenicillin locked beta-lactamase into a globular conformation, and prevented the translocation of the fusion protein. This indicates that under normal conditions the beta-lactamase portion unfolds for translocation. Cytosolic machinery must be responsible for the unfolding. The unfolding is a prerequisite for translocation through the Sec61 channel into the lumen of the ER, where the polypeptide is again folded into a bioactive and secretion-competent conformation. Lhs1p is a member of the Hsp70 family, which functions in the conformational repair of misfolded proteins in the yeast ER. It contains Hsp70 motifs, thus it has been thought to be an ATPase, like other Hsp70 members. In order to understand its activity, authentic Lhs1p and its recombinant forms expressed in E. coli, were purified. However, no ATPase activity of Lhs1p could be detected. Nor could physical interaction between Lhs1p and activators of the ER Hsp70 chaperone Kar2p, such as the J-domain proteins Sec63p, Scj1p, and Jem1p and the nucleotide exchange factor Sil1p, be demonstrated. The domain structure of Lhs1p was modelled, and found to consist of an ATPase-like domain, a domain resembling the peptide-binding domain (PBD) of Hsp70 proteins, and a C-terminal extension. Crosslinking experiments showed that Lhs1p and Kar2p interact. The interacting domains were the C-terminal extension of Lhs1p and the ATPase domain of Kar2p, and this interaction was independent of ATPase activity of Kar2p. A model is presented where the C-terminal part of Lhs1p forms a Bag-like 3 helices bundle that might serve in the nucleotide exchange function for Kar2p in translocation and folding of secretory proteins in the ER. Exit of secretory proteins in COPII-coated vesicles is believed to be dependent of retrograde transport from the Golgi to the ER in COPI-coated vesicles. It is thought that receptors escaping to the Golgi must be recycled back to the ER exit sites to recruit cargo proteins. We found that Hsp150 leaves the ER even in the absence of functional COPI-traffic from the Golgi to the ER. Thus, an alternative, COPI-independent ER exit pathway must exists, and Hsp150 is recruited to this route. The region containing the signature guiding Hsp150 to this alternative pathway was mapped.
Resumo:
The mechanism by which human leukocyte antigen B27 (HLA-B27) contributes to ankylosing spondylitis (AS) remains unclear. Genetic studies demonstrate that association with and interaction between polymorphisms of endoplasmic reticulum aminopeptidase 1 (ERAP1) and HLA-B27 influence the risk of AS. It has been hypothesised that ERAP1-mediated HLA-B27 misfolding increases endoplasmic reticulum (ER) stress, driving an interleukin (IL) 23-dependent, pro-inflammatory immune response. We tested the hypothesis that AS-risk ERAP1 variants increase ER-stress and concomitant pro-inflammatory cytokine production in HLA-B27 + but not HLA-B27-AS patients or controls. Forty-nine AS cases and 22 healthy controls were grouped according to HLA-B27 status and AS-associated ERAP1 rs30187 genotypes: HLA-B27 + ERAP1 risk, HLA-B27 + ERAP1 protective, HLA-B27-ERAP1 risk and HLA-B27-ERAP1 protective. Expression levels of ER-stress markers GRP78 (8 kDa glucose-regulated protein), CHOP (C/EBP-homologous protein) and inflammatory cytokines were determined in peripheral blood mononuclear cell and ileal biopsies. We found no differences in ER-stress gene expression between HLA-B27 + and HLA-B27-cases or healthy controls, or between cases or controls stratified by carriage of ERAP1 risk or protective alleles in the presence or absence of HLA-B27. No differences were observed between expression of IL17A or TNF (tumour necrosis factor) in HLA-B27 + ERAP1 risk, HLA-B27 + ERAP1 protective and HLA-B27-ERAP1 protective cases. These data demonstrate that aberrant ERAP1 activity and HLA-B27 carriage does not alter ER-stress levels in AS, suggesting that ERAP1 and HLA-B27 may influence disease susceptibility through other mechanisms. © 2015 Macmillan Publishers Limited.