896 resultados para Endocytosis modulators


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anticancer activity of the new [Ru(eta(5)-C5H5)(PPh3)(Me(2)bpy)][CF3SO3] (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine) complex was evaluated in vitro against several human cancer cell lines, namely A2780, A2780CisR, HT29, MCF7, MDAMB231 and PC3. Remarkably, the IC50 values, placed in the nanomolar and sub-micromolar range, largely exceeded the activity of cisplatin. Binding to human serum albumin, either HSA (human serum albumin) or HSA(faf) (fatty acid-free human serum albumin) does not affect the complex activity. Fluorescence studies revealed that the present ruthenium complex strongly quench the intrinsic fluorescence of albumin. Cell death by the [Ru(eta(5)-C5H5)(PPh3)(Me(2)bpy)][CF3SO3] complex was reduced in the presence of endocytosis modulators and at low temperature, suggesting an energy-dependent mechanism consistent with endocytosis. On the whole, the biological activity evaluated herein suggests that the complex could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=eta(5)-cyclopentadienyl, mTPPMS = diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy = 2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bleeding complications in dengue may occur irrespective of the presence of plasma leakage. We compared plasma levels of modulators of the endothelial barrier among three dengue groups: bleedings without plasma leakage, dengue hemorrhagic fever, and non-complicated dengue. The aim was to evaluate whether the presence of subtle alterations in microvascular permeability could be detected in bleeding patients. Plasma levels of VEGF-A and its soluble receptors were not associated with the occurrence of bleeding in patients without plasma leakage. These results provide additional rationale for considering bleeding as a complication independent of endothelial barrier breakdown, as proposed by the 2009 WHO classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinal pigment epithelium cells, along with tight junction (TJ) proteins, constitute the outer blood retinal barrier (BRB). Contradictory findings suggest a role for the outer BRB in the pathogenesis of diabetic retinopathy (DR). The aim of this study was to investigate whether the mechanisms involved in these alterations are sensitive to nitrosative stress, and if cocoa or epicatechin (EC) protects from this damage under diabetic (DM) milieu conditions. Cells of a human RPE line (ARPE-19) were exposed to high-glucose (HG) conditions for 24 hours in the presence or absence of cocoa powder containing 0.5% or 60.5% polyphenol (low-polyphenol cocoa [LPC] and high-polyphenol cocoa [HPC], respectively). Exposure to HG decreased claudin-1 and occludin TJ expressions and increased extracellular matrix accumulation (ECM), whereas levels of TNF-α and inducible nitric oxide synthase (iNOS) were upregulated, accompanied by increased nitric oxide levels. This nitrosative stress resulted in S-nitrosylation of caveolin-1 (CAV-1), which in turn increased CAV-1 traffic and its interactions with claudin-1 and occludin. This cascade was inhibited by treatment with HPC or EC through δ-opioid receptor (DOR) binding and stimulation, thereby decreasing TNF-α-induced iNOS upregulation and CAV-1 endocytosis. The TJ functions were restored, leading to prevention of paracellular permeability, restoration of resistance of the ARPE-19 monolayer, and decreased ECM accumulation. The detrimental effects on TJs in ARPE-19 cells exposed to DM milieu occur through a CAV-1 S-nitrosylation-dependent endocytosis mechanism. High-polyphenol cocoa or EC exerts protective effects through DOR stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activities of conantokin-G (con-G), conantokin-T (con-T), and several novel analogues have been studied using polyamine enhancement of [H-3]MK-801 binding to human glutamate-N-methyl-D-aspartate (NMDA) receptors, and their structures have been examined using CD and H-1 NMR spectroscopy. The potencies of con-G[A7], con-G, and con-T as noncompetitive inhibitors of spermine-enhanced [H-3]MK-801 binding to NMDA receptor obtained from human brain tissue are similar to those obtained using rat brain tissue. The secondary structure and activity of con-G are found to be highly sensitive to amino acid substitution and modification. NMR chemical shift data indicate that con-G, con-G[D8,D17], and con-G[A7] have similar conformations in the presence of Ca2+. This consists of a helix for residues 2-16, which is kinked in the vicinity of Gla10. This is confirmed by 3D structure calculations on con-G[A7]. Restraining this helix in a linear form (i.e., con-G[A7,E10-K13]) results in a minor reduction in potency. Incorporation of a 7-10 salt-bridge replacement (con-G[K7-E10]) prevents helix formation in aqueous solution and produces a peptide with low potency. Peptides with the Leu5-Tyr5 substitution also have low potencies (con-G[Y5,A7] and con-G[Y5,K7]) indicating that Leu5 in con-G is important for full antagonist behavior. We have also shown that the Gla-Ala7 substitution increases potency, whereas the Gla-Lys7 substitution has no effect. Con-G and con-G[K7] both exhibit selectivity between NMDA subtypes from mid-frontal and superior temporal gyri, but not between sensorimotor and mid-frontal gyri. Asn8 and/or Asn17 appear to be important for the ability of con-G to function as an inhibitor of polyamine-stimulated [3H]MK-801 binding, but not in maintaining secondary structure. The presence of Ca2+ does not increase the potencies of con-G and con-T for NMDA receptors but does stabilize the helical structures of con-G, con-G[D8,D17], and, to a lesser extent, con-G[A7]. The NMR data support the existence of at least two independent Ca2+-chelating sites in con-G, one involving Gla7 and possibly Gla3 and the other likely to involve Gla10 and/or Gla14.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spider toxins that target potassium channels constitute a new class of pharmacological tools that can be used to probe the structure and function of these channels at the molecular level. The limited studies performed to date indicate that these peptide toxins may facilitate the analysis of K+ channels that have proved insensitive to peptide inhibitors isolated from other animal sources. Thus far, two classes of K+ channel-selective spider toxins have been isolated, sequenced, and pharmacologically characterised - the hanatoxins (HaTx) from Grammastola spatulata and heteropodatoxins (HpTx) from Heteropoda venatoria. The hanatoxins block Kv2.1 and Kv4.2 voltage-gated K+ channels. In Kv2.1 K+ channels this occurs as a consequence of a depolarising shift in the voltage dependence of activation and not by occlusion of the channel pore. These toxins show minimal sequence homology with other peptide inhibitors of K+ channels, but they do share some homology with other ion channel toxins from spiders, particularly with regard to the spacing between cysteine residues. We have recently isolated three K+ channel antagonists from the venom of the Australian funnel-web spider Hadronyche versuta; at least two of these toxins are likely to constitute a new class of spider toxins active on K+ channels as they are approximately twice as large as HaTx and HpTx.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the mast cell-specific gangliosides in the modulation of the endocytic pathway of Fc epsilon RI was investigated in RBL-2H3 cells and in the ganglioside-deficient cell lines, E5 and D1. MAb BC4, which binds to the alpha subunit of Fc epsilon RI, was used in the analysis of receptor internalization. After incubation with BC4-FITC for 30 min, endocytic vesicles in RBL-2H3 and E5 cells were dispersed in the cytoplasm. After 1 hr, the endocytic vesicles of the RBL-2H3 cells had fused and formed clusters, whereas in the E5 cells, the fusion was slower. In contrast, in D1 cells, the endocytic vesicles were smaller and remained close to the plasma membrane even after 3 hr of incubation. When incubated with BC4-FITC and subsequently imunolabeled for markers of various endocytic compartments, a defect in the endocytic pathway in the E5 and D1 cells became evident. In the D1 cells, this defect was observed at the initial steps of endocytosis. Therefore, the ganglioside derivatives from GD1b are important in the endocytosis of Fc epsilon RI in mast cells. Because gangliosides may play a role in mast cell-related disease processes, they provide an attractive target for drug therapy and diagnosis. (J Histochem Cytochem 59:428-440, 2011)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione (GSH) has an important dual role in parasite-host relationship in Leishmania major infection. Our previous studies showed that both antioxidant systems, glutathione and trypanothione/trypanothione reductase, participate in the protection of Leishmania against the toxic effect of nitrogen-derived reactive species. On the other hand, GSH also is very important to the modulation of the effective immune response, inducting NO production and leishmanicidal activity of macrophages. In the present study, we investigated the role of host GSH during the course of L. major infection, analysing the size of footpad lesions and parasite load from mice treated with two GSH modulators, N-acethyl-L-cysteine (NAC) and buthionine sulphoximine (BSO). Resistant mice treated with BSO, which depletes GSH develop exacerbated lesions, but only harbour higher parasite load in their lesions 2 weeks post-infection. Although the NAC treatment does not affect the footpad lesions development in susceptible BALB/c mice, it significantly reduced the tissue parasitism in the lesions throughout the course of infection. Interestingly, the treatment with BSO did not change the course of L. major infection on susceptible mice when compared with nontreated mice. These results suggest that GSH is an important antioxidant modulator during anti-Leishmania immune response in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urethral epithelial cells are invaded by Neisseria gonorrhoeae during gonococcal infection in men. To understand further the mechanisms of gonococcal entry into host cells, we used the primary human urethral epithelial cells (PHUECs) tissue culture system recently developed by our laboratory. These studies showed that human asialoglycoprotein receptor (ASGP-R) and the terminal lactosamine of lacto-N-neotetraose-expressing gonococcal lipooligosaccharide (LOS) play an important role in invasion of PHUECs. Microscopy studies showed that ASGP-R traffics to the cell surface after gonococcal challenge. Co-localization of ASGP-R with gonococci was observed. As ASGP-R-mediated endocytosis is clathrin dependent, clathrin localization in PHUECs was examined after infection. Infected PHUECs showed increased clathrin recruitment and co-localization of clathrin and gonococci. Preincubating PHUECs in 0.3 M sucrose or monodansylcadaverine (MDC), which both inhibit clathrin-coated pit formation, resulted in decreased invasion. N. gonorrhoeae strain 1291 produces a single LOS glycoform that terminates with Gal(beta1-4)Glc-Nac(beta1-3)Gal(beta1-4)Glc (lacto-N-neotetraose). Invasion assays showed that strain 1291 invades significantly more than four isogenic mutants expressing truncated LOS. Sialylation of strain 1291 LOS inhibited invasion significantly. Preincubation of PHUECs in asialofetuin (ASF), an ASGP-R ligand, significantly reduced invasion. A dose-response reduction in invasion was observed in PHUECs preincubated with increasing concentrations of NaOH-deacylated 1291 LOS. These studies indicated that an interaction between lacto-N-neotetraose-terminal LOS and ASGP-R allows gonococcal entry into PHUECs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated monocytes and macrophages secrete the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) TNF-alpha is produced as a 26 kd transmembrane protein that is cleaved to release a 17 kd soluble protein. TNF-alpha in both forms is biologically active. The intracellular trafficking of membrane-associated TNF-alpha in lipopolysaccharide-activated mouse macrophages was assessed after treatment with the metalloprotease inhibitor BB-3103, which prevents the cleavage of pro-TNF-alpha. Immunoprecipitation and immunofluorescence studies showed sustained expression of cell-associated TNF-alpha in the presence of the inhibitor. Cell immunoreactivity and surface biotinylation revealed that uncleaved TNF-alpha accumulated on the cell surface and was endocytosed, appearing in intracellular vesicles. Perturbation of post-Golgi traffic blocked the surface expression of 26 kd TNF-alpha. Tracking a bolus of TNF-alpha over time in cycloheximide-treated cells confirmed that uncleaved TNF-alpha is first transported to the cell surface and subsequently endocytosed. Vesicular structures immunoreactive for TNF-alpha were identified as endosomes by double labeling. The secretory and membrane-associated endocytic trafficking of TNF-alpha provides a mechanism for modulating the quantity of biologically active 26 kd TNF-alpha expressed on macrophages, allowing regulation of paracrine and autocrine responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

dEndocytosis is required for efficient mitogen-activated protein kinase (MAPK) activation by activated growth factor receptors. We examined if H-Ras and K-Ras proteins, which are distributed across different plasma membrane microdomains, have equal access to the endocytic compartment and whether this access is necessary for downstream signaling. Inhibition of endocytosis by dominant interfering dynamin-K44A blocked H-Ras but not K-Ras-mediated PC12 cell differentiation and selectively inhibited H-Ras- but not K-Ras-mediated Raf-1 activation in BHK cells. H-Ras- but not K-Ras-mediated Raf-1 activation was also selectively dependent on phosphoinositide 3-kinase activity. Stimulation of endocytosis and endocytic recycling by wildtype Rab5 potentiated H-Ras-mediated Raf-1 activation. In contrast, Rab5-Q79L, which stimulates endocytosis but not endocytic recycling, redistributed activated H-Ras from the plasma membrane into enlarged endosomes and inhibited H-Ras-mediated Raf-1 activation. Rab5-Q79L expression did not cause the accumulation of wild-type H-Ras in enlarged endosomes. Expression of wild-type Rab5 or Rab5-Q79L increased the specific activity of K-Ras-activated Raf-1 but did not result in any redistribution of K-Ras from the plasma membrane to endosomes. These results show that H-Ras but not K-Ras signaling though the Raf/MEK/MAPK cascade requires endocytosis and enclocytic recycling. The data also suggest a mechanism for returning Raf-1 to the cytosol after plasma membrane recruitment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cadherin cell-cell adhesion molecules are important determinants of morphogenesis and tissue patterning. C-cadherin plays a key role in the cell-upon-cell movements seen during Xenopus gastrulation. In particular, regulated changes in C-cadherin adhesion critically influence convergence-extension movements, thereby determining organization of the body plan. It is also predicted that remodelling of cadherin adhesive contacts is important for such cell-on-cell movements to occur. The recent demonstration that Epithelial (E-) cadherin is capable of undergoing endocytic trafficking to and from the cell surface presents a potential mechanism for rapid remodelling of such adhesive contacts. To test the potential role for C-cadherin endocytosis during convergence-extension, we expressed in early Xenopus embryos a dominantly-inhibitory mutant of the GTPase, dynamin, a key regulator of clathrin-mediated endocytosis. We report that this dynamin mutant significantly blocked the elongation of animal cap explants in response to activin, accompanied by inhibition of C-cadherin endocytosis. We propose that dynamin-dependent endocytosis of C-cadherin plays an important role in remodelling adhesive contacts during convergence-extension movements in the early Xenopus embryo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the periphery, physiological dopamine increases renal blood flow, decreases renal resistance and acts on the kidney tubule to enhance natriuresis and diuresis. The loss of dopamine function may be involoved in the deterioration in kidney function associated with ageing and may have a role in the pathogenesis of hypertension and diabetes. Intravenous dopamine is used as a positive inotrope in the treatment of acute heart failure and cardiogenic shock and as a diuretic in renal failure. The clinical uses of dopamine are limited, as it must be given intravenously, and also has widespread effects. The levels of peripheral dopamine can be increased by the administration of L-dopa to increase synthesis, prodrugs to release dopamine (docarpamine, glu-dopa) or by inhibiting the breakdown of dopamine (nitecapone). Preliminary clinical trials suggest that docarpamine may be useful in patients with low cardiac output syndrome after cardiac surgery and in refractory cirrhotic ascites. Ibopamine is an agonist at dopamine D1 and D2 receptors, which may retard the progression of chronic renal failure. Gludopa is selective for the kidney thus avoiding widespread side effects. The early clinical studies with ibopamine as a diuretic in heart failure were favourable but the subsequent large mortality study showed that ibopamine increased mortality. Fenoldopam is a selective dopamine D1 receptor agonist. Intravenous fenoldopam may be useful in the treatment of hypertension associated with coronary artery bypass surgery or in hypertensive emergencies. Although our understanding of physiological and pathological roles of peripheral dopamine has been increasing rapidly in recent times, we still need more information to allow the design of clinically useful drugs that modify these roles. One priority is an orally-active selective dopamine D1 receptor agonist.