648 resultados para Endo-polygalacturonase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pectinase was identified and isolated from a commercial Aspergillus niger pectinase preparation. The crude enzyme preparation, which was prepared by precipitation of the water extract of the culture of A. niger with ammonium sulfate, was further fractionated by three steps of chromatography, i. e., cation exchange, hydrophobic interaction and onion exchange, to obtain an electrophoretically homogeneous pectinase. The molecular weight of the purified enzyme was estimated by SDS-PAGE to be about 40.4 kDa under both nonreducing and reducing conditions, with the optimum pH at 5.0 and the optimum temperature at 36C. The enzyme was stable at temperatures below 35C. The partial N-terminal ammo acid sequence data analysis of the first 19 amina acids of the obtained pectinase revealed 94.7% and 89.5% homology with two reported pectinases from A. niger.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of plants with medicinal purposes is an ancient practice still very common in developing regions, and is rapidly spreading in industrialized countries. This fact is evidenced by the large number of ethnobotanical studies found in the literature referring that these plants are often used as decoctions and infusions. In most studies the reported biological activities are attributed to the presence of phenolic compounds, due to their antioxidant properties, and to polysaccharides, with its anti-tumoral properties. In “Trás-os-Montes” region, some of the most popular infusions used by the popular medicine are prepared with the dried leaves of Fraxinus angustifolia, the dried shoots of Mentha suaveolens, and the dried inflorescences of Pterospartum tridentatum. However, there are no studies about the polysaccharides present in these infusions. Thus, through the structural characterization of the polysaccharides present in the infusions of F. angustifolia, M. suaveolens, and P. tridentatum, the present PhD thesis intends to evaluate the possible relation between polysaccharides and the immunostimulatory activity that these infusions might present. In a preliminary phase, infusions of F. angustifolia were prepared according to the popular tradition, and it was observed that the obtained water soluble material contained approximately 85% of material non-retained in C18 cartridges, with hydrophilic characteristics, with the remaining 15% comprising retained-material with hydrophobic characteristics. It was also shown that the infusions only contained between 2 and 4% of high molecular weight material (HMWM), which comprised approximately 30% of carbohydrate material. Sugar and methylation analysis of the HMWM suggested the presence of pectic polysaccharides, together with type II arabinogalactans, mannans, and xyloglucans. However, the amount of material obtained is to low for the fractionation, and structural analysis of the polysaccharides present. The 4 h decoction, divided in two periods of 2 h, with water renewal, allowed to increase the HMWM yield, relatively to the infusions traditional infusions. It was also observed that the decoction also allowed to increase the HMWM proportion of carbohydrate material, due to an increase in the proportion of uronic acid present, although the neutral sugar residues seemed to be detected in similar proportions. Therefore, in all the experiments subsequently performed, the HMWM used was obtained through the decoction of F. angustifolia dried leaves, M. suaveolens dried shoots, and P. tridentatum dried inflorescences. x After the fractionation, through ethanol precipitation, and anion exchange chromatography, of the polysaccharides from the HMWM obtained by the decoction of the vegetable material of the distinct studied plants, it was observed the presence of high proportions of pectic polysaccharides, containing type I arabinogalactans, together with minor proportions of type II arabinogalactans, mannans, and xyloglucans. The presence of pectic polysaccharides in the extracts from F. angustifolia was also evidenced through endo-polygalacturonase treatment, and ESI-MS and ESI-MS/MS experiments. The detection of linked pentose and uronic acid residues, also seemed to suggest the presence of xylogalacturonan domains in the pectic polysaccharides from F. angustifolia. The extracts from F. angustifolia dried leaves also contained type II arabinogalactans that exhibited a higher structural diversity than those detected in the M. suaveolens, and P. tridentatum extracts, particularly in the substitution degree of the galactan backbone, and in the extension of the (1→5)-Araf side chains. Moreover, for all the plants studied, it was also observed that the type II arabinogalactans, extracted during the 2nd 2h of the extraction process, exhibited a substitution degree of the galactan backbone higher than those extracted during the 1st 2h. The extracts from P. tridentatum dried inflorescences contained higher proportions of mannans, and also of xyloglucans, both presenting a substitution degree higher than those, which were detected in lower proportion in the extracts of F. angustifolia and M. suaveolens. Through ESI-MS and ESI-MS/MS it was possible to evidence that the mannans present in the extracts of P. tridentatum presented acetyl groups on the O-2 of the mannosyl residues. It was also evidenced that the P. tridentatum mannans were more extensively acetylated than the mannans detected in the coffee infusion, LBG, and other non-conventional mannan sources. Moreover, it was detected the presence of oligosaccharides comprising hexose residues linked to non acetylated pentose residues, suggesting the possible presence of arabinose residues in the mannans from P. tridentatum extracts. The immunostimulatory activity of three fractions isolated from the extracts of F. angustifolia, M. suaveolens, and P. tridentatum, was tested and an increase in the NO production by macrophages, without compromising their cellular viability, was observed. The type I, and type II arabinogalactans detected in the extracts from F. angustifolia, and M. suaveolens seem to have contributed for the observed immunostimulatory activity. For the fraction from P. tridentatum, the mannans acetylation, and the presence of type I, and type II arabinogalactans seemed to contribute for the macrophage immunostimulatory activity observed. The possible presence of storage xyloglucans from the inflorescences seeds, also seems to have contributed for the immunostimulatory activity registered when the macrophages were stimulated with higher extract concentrations. The results obtained allow to conclude that the extracts of F. angustifolia dried leaves, M. suaveolens dried shoots, and P. tridentatum dried inflorescences contained high proportions of pectic polysaccharides, exhibiting type I arabinogalactans, together with other polysaccharides, such as type II arabinogalactans, mannans, and xyloglucans. This polysaccharide mixture seems to have contributed to the immunostimulatory activity of fractions isolated from the extracts of the studied plants. Therefore, as the same type of polysaccharides seem to be present in the decoctions and in the infusions, it seems possible that the polysaccharides might contribute for the therapeutic properties frequently associated by the popular tradition to the infusions of these plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endo-polygalacturonase (endo-PG), exo-polygalacturonase (exo-PG) and pectin liase (PL) were produced by solid-state fermentation of a mixture of orange bagasse and wheat bran (1:1) with the filamentous fungus Penicillium viridicatum RFC3. This substrate was prepared with two moisture contents, 70% and 80%, and each was fermented in two types of container, Erlenmeyer flask and polypropylene pack. When Erlenmeyer flasks were used, the medium containing 80% of initial moisture afforded higher PL production while neither exo- nor endo-PG production was influenced by substrate moisture. The highest enzyme activities obtained were 0.70 U mL(-1) for endo-PG, 8.90 U mL(-1) for exo-PG, and 41.30 U mL(-1) for PL. However, when the fermentation was done in polypropylene packs, higher production of all three enzymes was obtained at 70% moisture (0.7 and 8.33 U mL(-1) for endo- and exo-PG and 100 U mL(-1) for PL). An increase in the pH and decrease in the reducing sugar content of the medium was observed. The fungus was able to produce pectin esterase and other depolymerizing enzymes such as xylanase, CMCase, protease and amylase. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research deals with the production of pectic oligosaccharides (POS) from agro-industrial residues, with specific focus on development of continuous cross flow enzyme membrane reactor. Pectic oligosaccharides have recently gained attention due to their prebiotic activity. Lack of information on the continuous production of POS from agro-industrial residues formed the basis for the present study. Four residues i.e sugar beet pulp, onion hulls, pressed pumpkin cake and berry pomace were taken to study their pectin content. Based on the presence of higher galacturonic acid and arabinose (both homogalacturonan and rhamnogalacturonan) in sugar beet pulp and galacturonic acid (only homogalacturonan) in onion hulls, further optimization of different extraction methods of pectin (causing minimum damage to pectic chain) from these residues were done. The most suitable extractant for sugar beet pulp and onion hulls were nitric acid and sodium hexametaphosphate respectively. Further the experiments on the continuous production of POS from sugar beet pulp in an enzyme membrane reactor was initiated. Several optimization experiments indicated the optimum enzyme (Viscozyme) as well as feed concentration (25 g/L) to be used for producing POS from sugar beet pulp in an enzyme membrane reactor. The results highlighted that steady state POS production with volumetric and specific productivity of 22g/L/h and 11 g/gE/h respectively could be achieved by continuous cross flow filtration of sugar beet pulp pectic extract over 10 kDa membrane at residence time of 20 min. The POS yield of about 80% could be achieved using above conditions. Also, in this thesis preliminary experiments on the production and characterization of POS from onion hulls were conducted. The results revelaed that the most suitable enzyme for POS production from onion hulls is endo-polygalacturonase M2. The POS produced from onion hulls were present in the form of DP1 -DP10 in substituted as well as unsubstituted forms. This study clearly demonstrates that continuous production of POS from pectin rich sources can be achieved by using cross flow continuous enzyme membrane reactor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three species of fungi Sporotrichum thermophile, Botrytis cinerea and Trichoderma viride were assessed for their ability to utilize a variety of plant cell substrates (methanol extracted), Catharanthus roseus, Daucus carota, re-autoclaved C. roseus, re-autoclaved D. carota) which preliminary studies had indicated contained the necessary nutrients for fungal growth. Incubated in a suitable manner all three fungal species were able to grow on C. roseus and D. carota plant cell biomass in addition to material which had undergone methanol extraction or a re-autoclaving process to remove soluble components. Fungal biomass yields were markedly influenced by substrate, with each fungal species demonstrating a preference for particular plant cell material. Incubation conditions i.e. static or shaken and temperature also proved important. Release of glucose (i.e. values higher than Day 0) promoted by fungal breakdown of plant cell biomass was only noted with methanol extracted, re-autoclaved C. roseus and re-autoclaved D. carota material. A re-autoclaved substrate was also generally associated with high fungal C1, Cx, B-glucosidase and endo-polygalacturonase activity. In addition for each enzyme highest values were usually obtained from a particular fungal species. Buffering cultures at pH 3 or 5 further influenced enzyme activity, however in a majority of cases when flasks were unbuffered and the pH rose naturally to alkaline values higher enzyme activity was recorded. Likewise Tween 80 addition had only a limited beneficial effect. Finally filtrates containing glucose produced both from the re-autoclaving process and through fungal activity on plant cell biomass were utilized for Fusarium oxysporum, Saccharomyces cerevisiae and C. roseus plant cell culture. Although reasonable fungal biomass was obtained the use of such filtrates proved unsuitable for plant cell growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) allows the analysis of individual polymers at nanostructural level with a minimal sample preparation. This technique has been used to analyse the pectin disassembly process during the ripening and postharvest storage of several fleshy fruits. In general, pectins analysed by AFM are usually visualized as isolated chains, unbranched or with a low number of branchs and, occasionally, as large aggregates. However, the exact nature of these structures is unknown. It has been suggested that pectin aggregates represent a mixture of rhamnonogalacturonan I and homogalacturonan, while isolated chains and their branches are mainly composed by polygalacturonic acid. In order to gain insight into the nature of these structures, sodium carbonate soluble pectins from ripe strawberry (Fragaria x ananassa, Duch.) fruits were subjected to enzymatic digestion with endo-Polygalacturonase M2 from Aspergillus aculeatus, and the samples visualized by AFM at different time intervals. Pectins isolated from control, non-transformed plants, and two transgenic genotypes with low level of expression of ripening-induced pectinase genes encoding a polygalacturonase (APG) or a pectate lyase (APEL) were also included in this study. Before digestion, isolated pectin chains from control were shorter than those from transgenic fruits, showing number-average (LN) contour length values of 73.2 nm vs. 95.9 nm and 91.4 nm in APG and APEL, respectively. The percentage of branched polymers was significantly higher in APG polyuronides than in the remaining genotypes, 33% in APG vs. 6% in control and APEL. As a result of the endo-PG treatment, a gradual decrease in the main backbone length of isolated chains was observed in the three samples. The minimum LN value was reached after 8 h of digestion, being similar in the three genotypes, 22 nm. By contrast, the branches were not visible after 1.5-2 h of digestion. LN values were plotted against digestion time and the data fitted to a first-order exponential decay curve, obtaining R2 values higher than 0.9. The half digestion time calculated with these equations were similar for control and APG pectins, 1.7 h, but significantly higher in APEL, 2.5 h, indicating that these polymer chains were more resistant to endo-PG digestion. Regarding the pectin aggregates, their volumes were estimated and used to calculate LN molecular weights. Before digestion, control and APEL samples showed complexes of similar molecular weights, 1722 kDa, and slightly higher than those observed in APG samples. After endo-PG digestion, size of complexes diminished significantly, reaching similar values in the three pectin samples, around 650 kDa. These results suggest that isolated polymer chains visualized by AFM are formed by a HG domain linked to a shorter polymer resistant to endo-PG digestion, maybe xylogalacturonan or RG-I. The silencing of the pectate lyase gene slightly modified the structure and/or chemical composition of polymer chains making these polyuronides more resistant to enzymatic degradation. Similarly, polygalacturonic acid is one of the main component of the aggregates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extracellular polygalacturonase was isolated from 5-day culture filtrates of Thermoascus aurantiacus CBMAI-756 and purified by gel filtration and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60-65 degrees C. The apparent K (m) with citrus pectin was 1.46 mg/ml and the V (max) was 2433.3 mu mol/min/mg. The apparent molecular weight of the enzyme was 30 kDa. The enzyme was 100% stable at 50 degrees C for 1 h and showed a half-life of 10 min at 60 degrees C. Polygalacturonase was stable at pH 5.0-5.5 and maintained 33% of initial activity at pH 9.0. Metal ions, such as Zn+2, Mn+2, and Hg+2, inhibited 50, 75 and 100% of enzyme activity. The purified polygalacturonase was shown to be an endo/exo-enzyme, releasing mono, di and tri-galacturonic acids within 10 min of hydrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polygalacturonases are enzymes involved in the degradation of pectic substances, being extensively used in food industries, textile processing, degumming of plant rough fibres, and treatment of pectic wastewaters. Polygalacturonase (PG) production by thermophilic fungus Thermoascus aurantiacus on solid-state fermentation was carried out in culture media containing sugar cane bagasse and orange bagasse in proportions of 30% and 70% (w/w) at 45°C for 4 days. PG obtained was purified by gel filtration and ion-exchange chromatography. The highest activity was found between pH 4.5 and 5.5, and the enzyme preserved more than 80% of its activity at pH values between 5.0 and 6.5. At pH values between 3.0 and 4.5, PG retained about 73% of the original activity, whereas at pH 10.0 it remained around 44%. The optimum temperature was 60–65°C. The enzyme was completely stable when incubated for 1 hour at 50°C. At 55°C and 60°C, the activity decreased 55% and 90%, respectively. The apparent molecular weight was 29.3 kDa, Km of 1.58 mg/mL and Vmax of 1553.1μmol/min/mg. The presence of Zn+2, Mn+2, and Hg+2 inhibited 59%, 77%, and 100% of enzyme activity, respectively. The hydrolysis product suggests that polygalacturonase was shown to be an endo/exoenzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ripening-associated pectin disassembly in melon is characterized by a decrease in molecular mass and an increase in the solubilization of polyuronide, modifications that in other fruit have been attributed to the activity of polygalacturonase (PG). Although it has been reported that PG activity is absent during melon fruit ripening, a mechanism for PG-independent pectin disassembly has not been positively identified. Here we provide evidence that pectin disassembly in melon (Cucumis melo) may be PG mediated. Three melon cDNA clones with significant homology to other cloned PGs were isolated from the rapidly ripening cultivar Charentais (C. melo cv Reticulatus F1 Alpha) and were expressed at high levels during fruit ripening. The expression pattern correlated temporally with an increase in pectin-degrading activity and a decrease in the molecular mass of cell wall pectins, suggesting that these genes encode functional PGs. MPG1 and MPG2 were closely related to peach fruit and tomato abscission zone PGs, and MPG3 was closely related to tomato fruit PG. MPG1, the most abundant melon PG mRNA, was expressed in Aspergillus oryzae. The culture filtrate exponentially decreased the viscosity of a pectin solution and catalyzed the linear release of reducing groups, suggesting that MPG1 encodes an endo-PG with the potential to depolymerize melon fruit cell wall pectin. Because MPG1 belongs to a group of PGs divergent from the well-characterized tomato fruit PG, this supports the involvement of a second class of PGs in fruit ripening-associated pectin disassembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

hSSB1 is a recently discovered single-stranded DNA binding protein that is essential for efficient repair of DNA double-strand breaks (DSBs) by the homologous recombination pathway. hSSB1 is required for the efficient recruitment of the MRN complex to sites of DSBs and for the efficient initiation of ATM dependent signalling. Here we explore the interplay between hSSB1 and MRN. We demonstrate that hSSB1 binds directly to NBS1, a component of the MRN complex, in a DNA damage independent manner. Consistent with the direct interaction, we observe that hSSB1 greatly stimulates the endo-nuclease activity of the MRN complex, a process that requires the C-terminal tail of hSSB1. Interestingly, analysis of two point mutations in NBS1, associated with Nijmegen breakage syndrome, revealed weaker binding to hSSB1, suggesting a possible disease mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The racemic title compound, C9H11NO4 . H2O, a tricyclic rearranged aminonorbornane dicarboxylic acid is a conformationally rigid analogue of glutamic acid and exists as an ammonium-carboxylate zwitterion, with the bridghead carboxylic acid group anti-related. In the crystal, intermolecular N-H...O and O-H...O hydrogen-bonding interactions involving the ammonium, carboxylic acid and water donor groups with both water and carboxyl O-atom acceptors give a three-dimensional framework structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed analysis of the 1H and 13C NMR spectra of C-2 aryl and alkyl/desalkyl substituted isomeric exo- and endo-5-methylbicyclo[3.2.1]octane-6,8-diones is presented. The chemical shift of the C-5 angular methyl, the C-2 alkyl/olefinic (C-10)/C-2 methine protons, the aromatic proton shieldings and the characteristic AMX and ABX spectral pattern of the ketomethylene and bridgehead protons were found to be sensitive to the phenyl ring orientation (anisotropy). These distinctive features could be used for configurational distinction for this class of compounds. With increasing ortho-methoxy substitution on the phenyl ring, considerable deshilelding of the bridgehead proton was observed (ca. 0.6 ppm). Absence of the C-2 alkyl group in the desalkyl isomers resulted in substantial changes in the chemical shifts of different protons. A study of the NMR spectra of the corresponding bicyclic compounds with C-2 methoxy/hydroxy substitution instead of the aryl group revealed that the anisotropy of the phenyl ring and the electronegative oxygen substituents have opposite effects. The 13C NMR spectral assignment of each carbon resonance of C-2 aryl and alkyl/desalkyl substituted isomeric exo- and endo-5-methylbicyclo[3.2.1]octane-6,8-diones and the corresponding C-2 methoxy/hydroxy/chloro and methyl bicyclic compounds are reported. Additional ortho-methoxy substitution on the phenyl ring was found to produce considerable high field shifts of the C-10 and C-1 carbon resonances. A high-field shift was observed for the C-6 and C-8 carbonyl carbons, presumably due to 1,3-dicarbonyl interactions. The chemical shifts of C-1 aromatic, C-10 alkyl and C-2 carbons, which are sensitive to exo/endo isomerism, could be utilized in differentiating a pair of isomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian heparanase is an endo-β-glucuronidase associated with cell invasion in cancer metastasis, angiogenesis and inflammation. Heparanase cleaves heparan sulfate proteoglycans in the extracellular matrix and basement membrane, releasing heparin/heparan sulfate oligosaccharides of appreciable size. This in turn causes the release of growth factors, which accelerate tumor growth and metastasis. Heparanase has two glycosaminoglycan-binding domains; however, no three-dimensional structure information is available for human heparanase that can provide insights into how the two domains interact to degrade heparin fragments. We have constructed a new homology model of heparanase that takes into account the most recent structural and bioinformatics data available. Heparin analogs and glycosaminoglycan mimetics were computationally docked into the active site with energetically stable ring conformations and their interaction energies were compared. The resulting docked structures were used to propose a model for substrates and conformer selectivity based on the dimensions of the active site. The docking of substrates and inhibitors indicates the existence of a large binding site extending at least two saccharide units beyond the cleavage site (toward the nonreducing end) and at least three saccharides toward the reducing end (toward heparin-binding site 2). The docking of substrates suggests that heparanase recognizes the N-sulfated and O-sulfated glucosamines at subsite +1 and glucuronic acid at the cleavage site, whereas in the absence of 6-O-sulfation in glucosamine, glucuronic acid is docked at subsite +2. These findings will help us to focus on the rational design of heparanase-inhibiting molecules for anticancer drug development by targeting the two heparin/heparan sulfate recognition domains.