1000 resultados para Encircled energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The encircled energy of a focusing lens is one of the parameters directly affecting the target efficiency in high-power laser facilities. The direct measurement method of the encircled energy for the focusing lens based on the scanning Hartmann test is proposed in this paper. With the scanning Hartmann test setup, the information in the whole aperture of the focusing lens can be achieved. The encircled energy can be obtained by analyzing the spot diagram on the focal plane of the focusing lens. In experiments, the encircled energy of an aspheric focusing lens is measured using this method. The measurement result is in good agreement with that derived from measurement data by an interferometer and the difference is 7.7%. (C) 2006 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在传统哈特曼检验法基础上研制成功一种扫描型哈特曼检测新装置。可对最大口径为Ф300mm的聚焦镜在全口径范围内进行采样测量。该检测装置由大口径标准平行光管、扫描式哈特曼光阑、被俭聚焦镜、CCD摄像机及计算机组成。在水平和垂直两个径向上开有等间距排列且相互错开半个间距的小孔。并且在步进电机的驱动下绕光轴旋转。可对被检聚焦镜进行全口径连续采样。对有效口径为夺154mm的斐索平面干涉仪非球面准直物镜的球差及焦斑能量集中度进行了测量。进而由球差计算得到了波像差。并用干涉法对该准直物镜进行了测量。球差的理论值与测量值

Relevância:

60.00% 60.00%

Publicador:

Resumo:

提出了一种利用扫描型哈特曼检测装置检验靶镜光学质量的技术.该装置对传统哈特曼检验装置的光阑进行了改进,通过扫描型哈特曼光阑的旋转扫描,可对被检靶镜全口径范围内连续采样.利用该扫描型哈特曼检测装置对一块口径为φ270 mm的非球面靶镜的能量集中度和波像差进行了检验,其结果与激光数字波面干涉仪的测量结果相吻合,其中能量集中度的相对测量误差为7.7%,波像差的相对测量误差为10.2%,验证了该检测技术的有效性.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To compare, in patients with cancer and in healthy subjects, measured resting energy expenditure (REE) from traditional indirect calorimetry to a new portable device (MedGem) and predicted REE. DESIGN: Cross-sectional clinical validation study. SETTING: Private radiation oncology centre, Brisbane, Australia. SUBJECTS: Cancer patients (n = 18) and healthy subjects (n = 17) aged 37-86 y, with body mass indices ranging from 18 to 42 kg/m(2). INTERVENTIONS: Oxygen consumption (VO(2)) and REE were measured by VMax229 (VM) and MedGem (MG) indirect calorimeters in random order after a 12-h fast and 30-min rest. REE was also calculated from the MG without adjustment for nitrogen excretion (MGN) and estimated from Harris-Benedict prediction equations. Data were analysed using the Bland and Altman approach, based on a clinically acceptable difference between methods of 5%. RESULTS: The mean bias (MGN-VM) was 10% and limits of agreement were -42 to 21% for cancer patients; mean bias -5% with limits of -45 to 35% for healthy subjects. Less than half of the cancer patients (n = 7, 46.7%) and only a third (n = 5, 33.3%) of healthy subjects had measured REE by MGN within clinically acceptable limits of VM. Predicted REE showed a mean bias (HB-VM) of -5% for cancer patients and 4% for healthy subjects, with limits of agreement of -30 to 20% and -27 to 34%, respectively. CONCLUSIONS: Limits of agreement for the MG and Harris Benedict equations compared to traditional indirect calorimetry were similar but wide, indicating poor clinical accuracy for determining the REE of individual cancer patients and healthy subjects.