970 resultados para Enamel Erosion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

objective: This in vitro study aimed to analyse the protective effect of differently concentrated titanium (TiF4), zirconium (ZrF4) and hafnium (HfF4) tetrafluoride on enamel erosion. Methods: Polished enamel surfaces of 36 bovine crowns were covered with tape leaving 4 enamel windows each 3 mm in diameter exposed. The crowns were randomly assigned to six groups (each n = 6) and pretreated with 4% TiF4, 10% TiF4, 4% ZrF4, 10% ZrF4, 4% HfF4 or 10% HfF4 for 4 min (first window), 10 min (second window) or 15 min (third window). The fourth window of each crown was not pretreated and served as control. Erosion was performed stepwise with 1% HCl (pH 2) in five consecutive intervals of each 15 s (total 75 s). Enamel dissolution was quantified by colorimetric determination of phosphate release into the acid. For each tooth, cumulative phosphate loss of enamel pretreated with one of the tetrafluoride compounds was calculated as percentage of the respective control and statistically analysed using two-way ANOVA.Results: Enamel erosion was significantly reduced by TiF4, ZrF4 and HfF4 application. Cumulative phosphate loss (mean % of control, 75 s erosion) after 4-15 min application was significantly lower for 4% ZrF4 (7-11%), 10% ZrF4 (2-6%), 4% HfF4 (11-9%) and 10% HfF4 (12-16%) compared to 4% TiF4 (42-27%) and 10% TiF4 (54-33%). Only for 4% and 10% TiF4, phosphate loss decreased with increasing duration of application, but also increased with increasing acid intervals.Conclusion: TiF4, ZrF4 and HfF4 might protect enamel against short-time erosion, but protection was more enhanced by ZrF4 and HfF4 compared to TiF4 application overtime. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of mouth rinses containing fluoride (100 mu g/ml) and sodium trimetaphosphate (TMP) on enamel erosion was evaluated in vitro. Bovine enamel blocks were subjected to erosive challenges 4 times per day for 5 min, followed by treatment with placebo, 225 mu g F/ml, 100 mu g F/ml, 100 mu g F/ml and TMP (0.2, 0.4 and 0.6%) solutions (30 s) and storage in artificial saliva, over a duration of 5 days. TMP groups showed lower enamel wear than fluoride-only and placebo groups (p < 0.05). Addition of TMP at a TMP:NaF molar proportion between 1.24:1 and 3.72:1 to a solution containing 100 mu g F/ml presented a greater protective effect under erosive conditions than a solution containing 225 mu g F/ml, in the absence of TMP. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to assess the salivary residual effect of fluoride dentifrice on human enamel subjected to an erosive challenge. This crossover in situ study was performed in two phases (A and B), involving ten volunteers. In each phase, they wore acrylic palatal appliances, each containing 3 human enamel blocks, during 7 days. The blocks were subjected to erosion by immersion of the appliances in a cola drink for 5 minutes, 4 times a day. Dentifrice was used to brush the volunteers' teeth, 4 times a day, during 1 minute, before the appliance was replaced into the mouth. In phases A and B the dentifrices used had the same formulation, except for the absence (PD) or presence (FD) of fluoride, respectively. Enamel alterations were determined using profilometry, microhardness (%SMHC), acid- and alkali-soluble F analysis. The data were tested using ANOVA (p < 0.05). The concentrations (mean ± SD) of alkali- and acid-soluble F (μgF/cm 2) were, respectively, PD: 1.27 a ± 0.70/2.24∧ A ± 0.36 and FD: 1.49 a ± 0.44/2.24∧ ± 0.67 (p > 0.05). The mean wear values (± SD, μm) were PD: 3.63 a ± 1.54 and FD: 3.54 a ± 0.90 (p > 0.05). The mean %SMHC values (± SD) were PD: 89.63 a ± 4.73 and FD: 87.28 a ± 4.01 (p > 0.05). Thus, we concluded that the residual fluoride from the fluoride-containing dentifrice did not protect enamel against erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This in vitro study evaluated the effect of 35 hydrogen peroxide (HP) bleaching gel modified or not by the addition of calcium and fluoride on enamel susceptibility to erosion. Bovine enamel samples (3 mm in diameter) were divided into four groups (n = 15) according to the bleaching agent: control-without bleaching (C); 35 hydrogen peroxide (HP); 35 HP with the addition of 2 calcium gluconate (HP + Ca); 35 HP with the addition of 0.6 sodium fluoride (HP + F). The bleaching gels were applied on the enamel surface for 40 min, and the specimens were subjected to erosive challenge with Sprite Zero and remineralization with artificial saliva for 5 days. Enamel wear was assessed using profilometry. The data were analyzed by ANOVA/ Tukey's test (P 0.05). There were significant differences among the groups (P = 0.009). The most enamel wear was seen for C (3.37 ± 0.80 μm), followed by HP (2.89 ± 0.98 μm) and HP + F (2.72 ± 0.64 μm). HP + Ca (2.31 ± 0.92 μm) was the only group able to significantly reduce enamel erosion compared to C. The application of HP bleaching agent did not increase the enamel susceptibility to erosion. However, the addition of calcium gluconate to the HP gel resulted in reduced susceptibility of the enamel to erosion. © 2012 Alessandra B. Borges et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the ability of calcium-containing prescription-strength fluoride (F) toothpastes in preventing enamel erosion under low salivary flow simulating conditions. Methods: Enamel and dentin bovine specimens were assigned to the following groups: A - placebo; B - 1,100 ppm F/NaF (Aquafresh Advanced); C - 5,000 ppm F/NaF (Prevident 5000 Booster); D - 5000 ppm F/NaF+calcium sodium phosphosilicate (Topex Renew); and E - 5,000 ppm F/NaF+tri-calcium phosphate (Clinpro 5000). Specimens were positioned in custom-made devices, creating a sealed chamber on the surface, connected to peristaltic pumps. Citric acid was injected into the chamber for 2 minutes, followed by artificial saliva (0.05 ml/minute), for 60 minutes, 4x/day, for 3 days. Aquafresh was also tested under normal salivary flow (0.5 ml/minute), as reference (Group F). Specimens were exposed to the toothpastes for 2 minutes, 2x/day. After cycling, surface loss (SL) and concentration of loosely- and firmly-bound F were determined. Data were analyzed by ANOVA. Results: Group A (placebo) presented highest surface loss (SL), while Group F had the lowest, for both substrates. For enamel, none of the dentifrices differed from Group B or among each other. For dentin, none of the dentifrices differed from Group B, but Group E showed greater protection than Group C. Group E presented the highest F concentrations for both substrates, only matched by Group D for firmly-bound fluoride on enamel. All fluoridated dentifrices tested reduced SL, with no additional benefit from higher F concentrations. Some formulations, especially Clinpro 5000, increased F availability on the dental substrates, but no further erosion protection was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This in vitro study compared the effect of bleaching agents modified by the addition of calcium and/or fluoride and the application of a nano-hydroxyapatite paste after bleaching, on the susceptibility of enamel to erosion. Bovine enamel cylindrical samples (3 mm diameter) were assigned to six groups (n = 20 specimens/group) according to the bleaching agent: no bleaching (C-control), 7.5% hydrogen peroxide gel (HP), HP with 0.5% calcium gluconate (HP+Ca), HP with 0.2% sodium fluoride (HP+F), HP with calcium and fluoride (HP+Ca+F) and HP followed by the application of a nano-hydroxyapatite agent (HP+NanoP). The gels were applied on the enamel surface (1 h) followed by cyclic erosive challenges (Sprite Zero®-2 min), for 14 days. The paste was applied after bleaching for 5 min (HP+NanoP). The enamel surface alteration was measured by contact profilometry (µm) (after 7 and 14 days). C-control (mean ± SD: 2.29 ± 0.37 at 7 days/4.86 ± 0.72 at 14 days) showed significantly lower loss compared to the experimental groups. HP+Ca (3.34 ± 0.37/6.75 ± 1.09) and HP+F (4.49 ± 0.92/7.61 ± 0.90) presented significantly lower enamel loss than HP (4.18 ± 0.50/10.30 ± 1.58) only for 14 days and HP+Ca+F (4.92 ± 1.03/8.12 ± 1.52) showed values similar to the HP+F group. The HP+NanoP (5.51 ± 1.04/9.61 ± 1.21) resulted in enamel loss similar to the HP after 14 days. It was found that 7.5% hydrogen peroxide increased the susceptibility of enamel to erosion. The addition of calcium or fluoride to the bleaching gel reduced the erosion effect, while the nano-hydroxyapatite agent did not provide any protective effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This in vitro study evaluated the effect of calcium glycerophosphate (CaGP) supplemented to soft drinks on bovine enamel erosion. Material and methods: Four pH-cycles were performed, alternating demineralization by the beverage and remineralization in artificial saliva. Results: Mean wear (+/- SD, mu m) was 7.91 +/- 1.13, 7.39 +/- 1.01, 7.50 +/- 0.91 and 5.21 +/- 1.08 for Coca-Cola (TM) without CaGP or containing CaGP at 0.1, 1.0 or 2.0 mM, respectively, while no wear was detected for CaGP at 5.0 and 10.0 mM. Corresponding figures for Sprite Zero (TM) without CaGP or containing CaGP at 0.1, 1.0, 2.0, 5.0 or 10.0 mM were 8.04 +/- 1.30, 7.84 +/- 0.71, 7.47 +/- 0.80, 4.96 +/- 0.81, 3.99 +/- 0.10 and 1.87 +/- 0.12, respectively. Conclusion: Supplementation of both beverages with CaGP seems to be an alternative to reduce their erosive potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study was to screen CO2 laser (10.6 mu m) parameters to increase enamel resistance to a continuous-flow erosive challenge. Background data: A new clinical CO2 laser providing pulses of hundreds of microseconds, a range known to increase tooth acid-resistance, has been introduced in the market. Methods: Different laser parameters were tested in 12 groups (n = 20) with varying fluences from 0.1 to 0.9 J/cm(2), pulse durations from 80 to 400 mu s and repetition rates from 180 to 700 Hz. Non-lased samples (n = 30) served as controls. All samples were eroded by exposure to hydrochloric acid (pH 2.6) under continuous acid flow (60 mu L/min). Calcium and phosphate release into acid was monitored colorimetrically at 30 sec intervals up to 5 min and at 1 min intervals up to a total erosion time of 15 min. Scanning electron microscopic (SEM) analysis was performed in lased samples (n = 3). Data were statistically analysed by one-way ANOVA (p < 0.05) and Dunnett's post-hoc tests. Results: Calcium and phosphate release were significantly reduced by a maximum of 20% over time in samples irradiated with 0.4 J/cm(2) (200 mu s) at 450 Hz. Short-time reduction of calcium loss (<= 1.5 min) could be also achieved by irradiation with 0.7 J/cm(2) (300 mu s) at 200 and 300 Hz. Both parameters revealed surface modification. Conclusions: A set of CO2 laser parameters was found that could significantly reduce enamel mineral loss (20%) under in vitro erosive conditions. However, as all parameters also caused surface cracking, they are not recommended for clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New toothpastes with anti-erosion claims are marketed, but little is known about their effectiveness. This study investigates these products in comparison with various conventional NaF toothpastes and tin-containing products with respect to their erosion protection/abrasion prevention properties. In experiment 1, samples were demineralised (10 days, 6 × 2 min/day; citric acid, pH 2.4), exposed to toothpaste slurries (2 × 2 min/day) and intermittently stored in a mineral salt solution. In experiment 2, samples were additionally brushed for 15 s during the slurry immersion time. Study products were 8 conventional NaF toothpastes (1,400-1,490 ppm F), 4 formulations with anti-erosion claims (2 F toothpastes: NaF + KNO(3) and NaF + hydroxyapatite; and 2 F-free toothpastes: zinc-carbonate-hydroxyapatite, and chitosan) and 2 Sn-containing products (toothpaste: 3,436 ppm Sn, 1,450 ppm F as SnF(2)/NaF; gel: 970 ppm F, 3,030 ppm Sn as SnF(2)). A mouth rinse (500 ppm F as AmF/NaF, 800 ppm Sn as SnCl(2)) was the positive control. Tissue loss was quantified profilometrically. In experiment 1, most NaF toothpastes and 1 F-free formulation reduced tissue loss significantly (between 19 and 42%); the Sn-containing formulations were the most effective (toothpaste and gel 55 and 78% reduction, respectively). In experiment 2, only 4 NaF toothpastes revealed significant effects compared to the F-free control (reduction between 29 and 37%); the F-free special preparations and the Sn toothpaste had no significant effect. The Sn gel (reduction 75%) revealed the best result. Conventional NaF toothpastes reduced the erosive tissue loss, but had limited efficacy regarding the prevention of brushing abrasion. The special formulations were not superior, or were even less effective.