978 resultados para Emotion Processing
Resumo:
Theoretical accounts suggest that mirror neurons play a crucial role in social cognition. The current study used transcranial-magnetic stimulation (TMS) to investigate the association between mirror neuron activation and facialemotion processing, a fundamental aspect of social cognition, among healthy adults (n = 20). Facial emotion processing of static (but not dynamic) images correlated significantly with an enhanced motor response, proposed to reflect mirror neuron activation. These correlations did not appear to reflect general facial processing or pattern recognition, and provide support to current theoretical accounts linking the mirror neuron system to aspects of social cognition. We discuss the mechanism by which mirror neurons might facilitate facial emotion recognition.
Resumo:
People with schizophrenia perform poorly when recognising facial expressions of emotion, particularly negative emotions such as fear. This finding has been taken as evidence of a “negative emotion specific deficit”, putatively associated with a dysfunction in the limbic system, particularly the amygdala. An alternative explanation is that greater difficulty in recognising negative emotions may reflect a priori differences in task difficulty. The present study uses a differential deficit design to test the above argument. Facial emotion recognition accuracy for seven emotion categories was compared across three groups. Eighteen schizophrenia patients and one group of healthy age- and gender-matched controls viewed identical sets of stimuli. A second group of 18 age- and gender-matched controls viewed a degraded version of the same stimuli. The level of stimulus degradation was chosen so as to equate overall level of accuracy to the schizophrenia patients. Both the schizophrenia group and the degraded image control group showed reduced overall recognition accuracy and reduced recognition accuracy for fearful and sad facial stimuli compared with the intact-image control group. There were no differences in recognition accuracy for any emotion category between the schizophrenia group and the degraded image control group. These findings argue against a negative emotion specific deficit in schizophrenia.
Resumo:
The current study sought to investigate the nature of empathic responding and emotion processing in persons who have experienced Mild Head Injury (MHI) and how this relationship between empathetic responding and head injury status may differ in those with higher psychopathic characteristics (i.e., subclinical psychopathy). One-hundred university students (36% reporting having a previous MHI) completed an Emotional Processing Task (EPT) using images of neutral and negative valence (IAPS, 2008) designed to evoke empathy; physiological responses were recorded. Additionally, participants completed measures of cognitive competence and various individual differences (empathy - QCAE; Reniers, 2011; Psychopathy - SRP-III, Williams, Paulhus & Hare, 2007) and demographics questionnaires. MHI was found to be associated with lower affective empathy and physiological reactivity (pulse rate) while viewing images irrespective of valence, reflecting a pattern of generalized underarousal. The empathic deficits observed correlated with the individual’s severity of injury such that the greater number of injury characteristics and symptoms endorsed by a subject, the more dampened the affective and cognitive empathy reactions to stimuli and the lower his/her physiological reactivity. Importantly, psychopathy interacted with head injury status such that the effects of psychopathy were significant only for individuals indicating a MHI. This group, i.e., MHI subjects who scored higher on psychopathy, displayed the greatest compromise in empathic responding. Interestingly, the Callous Affect component of psychopathy was found to account for the empathic and emotion processing deficits observed for individuals who report a MHI; in contrast, the Interpersonal Manipulation component emerged as a better predictor of empathic and emotion deficits observed in the No MHI group. These different patterns may indicate the involvement of different underlying processes in the manifestation of empathic deficits associated with head injury or subclinical psychopathy. It also highlights the importance of assessing for prior head injury in populations with higher psychopathic characteristics due to the possible combined/enhanced influences. The results of this study have important social implications for persons who have experienced a concussion or limited neural trauma since even subtle injury to the head may be sufficient to produce dampened emotion processing, thereby impacting one’s social interactions and engagement (i.e., at risk for social isolation or altered interpersonal success). Individuals who experience MHI in conjunction with certain personality profiles (e.g., higher psychopathic characteristics) may be particularly at risk for being less capable of empathic compassion and socially-acceptable pragmatics and, as a result, may not be responsive to another person’s emotional well-being.
Resumo:
La méditation par le ‘mindfulness’ favorise la stabilité émotionelle, mais les mécanismes neuroneux qui sous-tendent ces effets sont peu connus. Ce projet investiga l’effet du ‘mindfulness’ sur les réponses cérébrales et subjectives à des images négatives, positives et neutres chez des méditants expérimentés et des débutants au moyen de l’imagerie par résonance magnétique fonctionnelle (IRMf). Le ‘mindfulness’ atténua l’intensité émotionelle via différents mécanismes cérébraux pour chaque groupe. Comparés aux méditants, les débutants manifestèrent une déactivation de l’amygdale en réponse aux stimuli émotifs durant le ‘mindfulness’. Comparés aux débutants, les méditants exhibèrent une déactivation de régions du réseau du mode par défaut (RMD) pendant le ‘mindfulness’ pour tous stimuli (cortex médian préfrontal [CMP], cortex cingulaire postérieur [CCP]). Le RMD est constitué de régions fonctionnellement connectées, activées au repos et déactivées lors de tâches explicites. Cependant, nous ne connaissons pas les impacts de l’entraînement par la méditation sur la connectivité entre régions du RMD et si ces effets persistent au-delà d’un état méditatif. La connectivité fonctionnelle entre régions du RMD chez les méditants et débutants au repos fut investiguée au moyen de l’IRMf. Comparés aux débutants, les méditants montrèrent une connectivité affaiblie entre subdivisions du CMP, et une connectivité accrue entre le lobule pariétal inférieur et trois regions du RMD. Ces résultats reflètent que les bienfaits immédiats du ‘mindfulness’ sur la psychopathologie pourraient être dûs à une déactivation de régions limbiques impliquées dans la réactivité émotionelle. De plus, les bienfaits à long-terme de la méditation sur la stabilité émotionelle pourrait être dûs à une déactivation de régions corticales et cingulaires impliquées dans l’évaluation de la signification émotive et une connectivité altérée entre régions du RMD à l’état de repos.
Resumo:
Il existe actuellement de nombreuses preuves démontrant que des facteurs génétiques et environnementaux interagissent pendant des périodes spécifiques du développement pour rendre une personne vulnérable aux troubles psychologiques via diverses adaptations physiologiques. Cette thèse porte sur l'impact de l’adversité prénatale (représentée par le petit poids à la naissance, PPN) et de l’adversité postnatale précoce (symptômes dépressifs maternels et comportements maternels négatifs), sur le développement du cerveau, particulièrement les régions fronto-limbiques impliquées dans le traitement des émotions, pendant l'enfance et l'adolescence. Des jumeaux monozygotes (MZ) sont utilisés, lorsque possible, afin de contrôler pour les effets génétiques. Les chapitres 1 et 2 présentent les résultats de la vérification de l'hypothèse que l’adversité prénatale et postnatale précoce sont associées à une altération du fonctionnement des régions fronto-limbique tels que l’amygdale, l’hippocampe, l’insula, le cortex cingulaire antérieur et le cortex préfrontal, en réponse à des stimuli émotifs chez des enfants et des adolescents. On observe que les symptômes dépressifs maternels sont associés à une activation plus élevée des régions fronto-limbiques des enfants en réponse à la tristesse. Les résultats de l’étude avec des adolescents suggèrent que le PPN, les symptômes dépressifs et les comportements maternels négatifs sont associés à une fonction altérée des régions fronto-limbiques en réponse à des stimuli émotionnels. Chez les jumeaux MZ on observe également que la discordance intra-paire de PPN et de certains comportements maternels est associée à une discordance intra-paire du fonctionnement du cerveau et que ces altérations diffèrent selon le sexe. Le chapitre 3 présente les résultats de la vérification de l'hypothèse que l’adversité prénatale et postnatale précoce sont associées à un volume total réduit du cerveau et de l’hypothèse que les comportements maternels peuvent servir de médiateur ou de modérateur de l'association entre le PPN et le volume du cerveau. Avec des jumeaux MZ à l’adolescence on observe a) que le PPN est effectivement associé à une diminution du volume total du cerveau et b) que la discordance intra-paire de PPN est associée à une discordance du volume du cerveau. En somme, cette thèse présente un ensemble de résultats qui soutiennent deux hypothèses importantes pour comprendre les effets de l’environnement sur le développement du cerveau : que l’environnement prénatal et postnatal précoce ont un impact sur le développement du cerveau indépendamment du code génétique et que les mécanismes impliqués peuvent différer entre les garçons et les filles. Finalement, l’ensemble de ces résultats sont discutés à la lumière des autres travaux de recherche dans ce domaine et des avenues à explorer pour de la recherche ultérieure sont proposées.
Resumo:
The current study examined the specificity of patterns of responding to high and low intensity negative emotional expressions of infants of mothers with social phobia, and their association with child outcomes at two years of age. Infants of mothers with social phobia, generalised anxiety disorder (GAD) or no history of anxiety were shown pairs of angry and fearful emotional expressions at 10 weeks of age. Symptoms of social withdrawal, anxiety and sleep problems were assessed at two years of age. Only infants of mothers with social phobia showed a tendency to look away from high intensity fear faces; however infants of mothers with both social phobia and GAD showed a bias towards high intensity angry faces. Among the offspring of mothers with social phobia, anxiety symptoms at two years of age were associated with a preference for high intensity fear faces in infancy. The reverse pattern was found amongst the offspring of non-anxious mothers. These findings suggest a possible specific response to emotional expressions among the children of mothers with social phobia.
Resumo:
Despite the fact that physical health and cognitive abilities decline with aging, the ability to regulate emotion remains stable and in some aspects improves across the adult life span. Older adults also show a positivity effect in their attention and memory, with diminished processing of negative stimuli relative to positive stimuli compared with younger adults. The current paper reviews functional magnetic resonance imaging studies investigating age-related differences in emotional processing and discusses how this evidence relates to two opposing theoretical accounts of older adults’ positivity effect. The aging-brain model [Cacioppo et al. in: Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind. New York, Oxford University Press, 2011] proposes that older adults’ positivity effect is a consequence of age-related decline in the amygdala, whereas the cognitive control hypothesis [Kryla-Lighthall and Mather in: Handbook of Theories of Aging, ed 2. New York, Springer, 2009; Mather and Carstensen: Trends Cogn Sci 2005;9:496–502; Mather and Knight: Psychol Aging 2005;20:554–570] argues that the positivity effect is a result of older adults’ greater focus on regulating emotion. Based on evidence for structural and functional preservation of the amygdala in older adults and findings that older adults show greater prefrontal cortex activity than younger adults while engaging in emotion-processing tasks, we argue that the cognitive control hypothesis is a more likely explanation for older adults’ positivity effect than the aging-brain model.
Resumo:
Background - Neural substrates of emotion dysregulation in adolescent suicide attempters remain unexamined. Method - We used functional magnetic resonance imaging to measure neural activity to neutral, mild or intense (i.e. 0%, 50% or 100% intensity) emotion face morphs in two separate emotion-processing runs (angry and happy) in three adolescent groups: (1) history of suicide attempt and depression (ATT, n = 14); (2) history of depression alone (NAT, n = 15); and (3) healthy controls (HC, n = 15). Post-hoc analyses were conducted on interactions from 3 group × 3 condition (intensities) whole-brain analyses (p < 0.05, corrected) for each emotion run. Results - To 50% intensity angry faces, ATT showed significantly greater activity than NAT in anterior cingulate gyral–dorsolateral prefrontal cortical attentional control circuitry, primary sensory and temporal cortices; and significantly greater activity than HC in the primary sensory cortex, while NAT had significantly lower activity than HC in the anterior cingulate gyrus and ventromedial prefrontal cortex. To neutral faces during the angry emotion-processing run, ATT had significantly lower activity than NAT in the fusiform gyrus. ATT also showed significantly lower activity than HC to 100% intensity happy faces in the primary sensory cortex, and to neutral faces in the happy run in the anterior cingulate and left medial frontal gyri (all p < 0.006,corrected). Psychophysiological interaction analyses revealed significantly reduced anterior cingulate gyral–insula functional connectivity to 50% intensity angry faces in ATT v. NAT or HC. Conclusions - Elevated activity in attention control circuitry, and reduced anterior cingulate gyral–insula functional connectivity, to 50% intensity angry faces in ATT than other groups suggest that ATT may show inefficient recruitment of attentional control neural circuitry when regulating attention to mild intensity angry faces, which may represent a potential biological marker for suicide risk.
Resumo:
Background In addition to the core symptoms, attention deficit hyperactivity disorder (ADHD) is associated with poor emotion regulation. There is some evidence that children and young adults with ADHD have lower omega-3 levels and that supplementation with omega-3 can improve both ADHD and affective symptoms. We therefore investigated differences between ADHD and non-ADHD children in omega-3/6 fatty acid plasma levels and the relationship between those indices and emotion-elicited event-related potentials (ERPs). Methods Children/adolescents with (n=31) and without ADHD (n=32) were compared in their plasma omega-3/6 indices and corresponding ERPs during an emotion processing task. Results Children with ADHD had lower mean omega-3/6 and ERP abnormalities in emotion processing, independent of emotional valence relative to control children. ERP abnormalities were significantly associated with lower omega-3 levels in the ADHD group. Conclusions The findings reveal for the first time that lower omega-3 fatty acids are associated with impaired emotion processing in ADHD children.
Resumo:
Strategies of cognitive control are helpful in reducing anxiety experienced during anticipation of unpleasant or potentially unpleasant events. We investigated the associated cerebral information processing underlying the use of a specific cognitive control strategy during the anticipation of affect-laden events. Using functional magnetic resonance imaging, we examined differential brain activity during anticipation of events of unknown and negative emotional valence in a group of eighteen healthy subjects that used a cognitive control strategy, similar to "reality checking" as used in psychotherapy, compared with a group of sixteen subjects that did not exert cognitive control. While expecting unpleasant stimuli, the "cognitive control" group showed higher activity in left medial and dorsolateral prefrontal cortex areas but reduced activity in the left extended amygdala, pulvinar/lateral geniculate nucleus and fusiform gyrus. Cognitive control during the "unknown" expectation was associated with reduced amygdalar activity as well and further with reduced insular and thalamic activity. The amygdala activations associated with cognitive control correlated negatively with the reappraisal scores of an emotion regulation questionnaire. The results indicate that cognitive control of particularly unpleasant emotions is associated with elevated prefrontal cortex activity that may serve to attenuate emotion processing in for instance amygdala, and, notably, in perception related brain areas.
Resumo:
Schizophrenia patients have been shown to be compromised in their ability to recognize facial emotion. This deficit has been shown to be related to negative symptoms severity. However, to date, most studies have used static rather than dynamic depictions of faces. Nineteen patients with schizophrenia were compared with seventeen controls on 2 tasks; the first involving the discrimination of facial identity, emotion, and butterfly wings; the second testing emotion recognition using both static and dynamic stimuli. In the first task, the patients performed more poorly than controls for emotion discrimination only, confirming a specific deficit in facial emotion recognition. In the second task, patients performed more poorly in both static and dynamic facial emotion processing. An interesting pattern of associations suggestive of a possible double dissociation emerged in relation to correlations with symptom ratings: high negative symptom ratings were associated with poorer recognition of static displays of emotion, whereas high positive symptom ratings were associated with poorer recognition of dynamic displays of emotion. However, while the strength of associations between negative symptom ratings and accuracy during static and dynamic facial emotion processing was significantly different, those between positive symptom ratings and task performance were not. The results confirm a facial emotion-processing deficit in schizophrenia using more ecologically valid dynamic expressions of emotion. The pattern of findings may reflect differential patterns of cortical dysfunction associated with negative and positive symptoms of schizophrenia in the context of differential neural mechanisms for the processing of static and dynamic displays of facial emotion.
Resumo:
While the neural regions associated with facial identity recognition are considered to be well defined, the neural correlates of non-moving and moving images of facial emotion processing are less clear. This study examined the brain electrical activity changes in 26 participants (14 males M = 21.64, SD = 3.99; 12 females M = 24.42, SD = 4.36), during a passive face viewing task, a scrambled face task and separate emotion and gender face discrimination tasks. The steady state visual evoked potential (SSVEP) was recorded from 64-electrode sites. Consistent with previous research, face related activity was evidenced at scalp regions over the parieto-temporal region approximately 170 ms after stimulus presentation. Results also identified different SSVEP spatio-temporal changes associated with the processing of static and dynamic facial emotions with respect to gender, with static stimuli predominately associated with an increase in inhibitory processing within the frontal region. Dynamic facial emotions were associated with changes in SSVEP response within the temporal region, which are proposed to index inhibitory processing. It is suggested that static images represent non-canonical stimuli which are processed via different mechanisms to their more ecologically valid dynamic counterparts.
Resumo:
Empirical evidence suggests impaired facial emotion recognition in schizophrenia. However, the nature of this deficit is the subject of ongoing research. The current study tested the hypothesis that a generalized deficit at an early stage of face-specific processing (i.e. putatively subserved by the fusiform gyrus) accounts for impaired facial emotion recognition in schizophrenia as opposed to the Negative Emotion-specific Deficit Model, which suggests impaired facial information processing at subsequent stages. Event-related potentials (ERPs) were recorded from 11 schizophrenia patients and 15 matched controls while performing a gender discrimination and a facial emotion recognition task. Significant reduction of the face-specific vertex positive potential (VPP) at a peak latency of 165 ms was confirmed in schizophrenia subjects whereas their early visual processing, as indexed by P1, was found to be intact. Attenuated VPP was found to correlate with subsequent P3 amplitude reduction and to predict accuracy when performing a facial emotion discrimination task. A subset of ten schizophrenia patients and ten matched healthy control subjects also performed similar tasks in the magnetic resonance imaging scanner. Patients showed reduced blood oxygenation level-dependent (BOLD) activation in the fusiform, inferior frontal, middle temporal and middle occipital gyrus as well as in the amygdala. Correlation analyses revealed that VPP and the subsequent P3a ERP components predict fusiform gyrus BOLD activation. These results suggest that problems in facial affect recognition in schizophrenia may represent flow-on effects of a generalized deficit in early visual processing.
Resumo:
The quick identification of potentially threatening events is a crucial cognitive capacity to survive in a changing environment. Previous functional MRI data revealed the right dorsolateral prefrontal cortex and the region of the left intraparietal sulcus (IPS) to be involved in the perception of emotionally negative stimuli. For assessing chronometric aspects of emotion processing, we applied transcranial magnetic stimulation above these areas at different times after negative and neutral picture presentation. An interference with emotion processing was found with transcranial magnetic stimulation above the dorsolateral prefrontal cortex 200-300 ms and above the left intraparietal sulcus 240/260 ms after negative stimuli. The data suggest a parallel and conjoint involvement of prefrontal and parietal areas for the identification of emotionally negative stimuli.