833 resultados para Embedded programs
Resumo:
Data flow analysis techniques can be used to help assess threats to data confidentiality and integrity in security critical program code. However, a fundamental weakness of static analysis techniques is that they overestimate the ways in which data may propagate at run time. Discounting large numbers of these false-positive data flow paths wastes an information security evaluator's time and effort. Here we show how to automatically eliminate some false-positive data flow paths by precisely modelling how classified data is blocked by certain expressions in embedded C code. We present a library of detailed data flow models of individual expression elements and an algorithm for introducing these components into conventional data flow graphs. The resulting models can be used to accurately trace byte-level or even bit-level data flow through expressions that are normally treated as atomic. This allows us to identify expressions that safely downgrade their classified inputs and thereby eliminate false-positive data flow paths from the security evaluation process. To validate the approach we have implemented and tested it in an existing data flow analysis toolkit.
Resumo:
Abstract: The Ambient Calculus was developed by Cardelli and Gordon as a formal framework to study issues of mobility and migrant code. We consider an Ambient Calculus where ambients transport and exchange programs rather that just inert data. We propose different senses in which such a calculus can be said to be polymorphically typed, and design accordingly a polymorphic type system for it. Our type system assigns types to embedded programs and what we call behaviors to processes; a denotational semantics of behaviors is then proposed, here called trace semantics, underlying much of the remaining analysis. We state and prove a Subject Reduction property for our polymorphically typed calculus. Based on techniques borrowed from finite automata theory, type-checking of fully type-annotated processes is shown to be decidable; the time complexity of our decision procedure is exponential (this is a worst-case in theory, arguably not encountered in practice). Our polymorphically-typed calculus is a conservative extension of the typed Ambient Calculus originally proposed by Cardelli and Gordon.
Resumo:
This paper is concerned with the uniformization of a system of afine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). In this paper, we present and implement an automatic system to achieve uniformization of systems of afine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.
Resumo:
Defence organisations perform information security evaluations to confirm that electronic communications devices are safe to use in security-critical situations. Such evaluations include tracing all possible dataflow paths through the device, but this process is tedious and error-prone, so automated reachability analysis tools are needed to make security evaluations faster and more accurate. Previous research has produced a tool, SIFA, for dataflow analysis of basic digital circuitry, but it cannot analyse dataflow through microprocessors embedded within the circuit since this depends on the software they run. We have developed a static analysis tool that produces SIFA compatible dataflow graphs from embedded microcontroller programs written in C. In this paper we present a case study which shows how this new capability supports combined hardware and software dataflow analyses of a security critical communications device.
Resumo:
Embedded real-time programs rely on external interrupts to respond to events in their physical environment in a timely fashion. Formal program verification theories, such as the refinement calculus, are intended for development of sequential, block-structured code and do not allow for asynchronous control constructs such as interrupt service routines. In this article we extend the refinement calculus to support formal development of interrupt-dependent programs. To do this we: use a timed semantics, to support reasoning about the occurrence of interrupts within bounded time intervals; introduce a restricted form of concurrency, to model composition of interrupt service routines with the main program they may preempt; introduce a semantics for shared variables, to model contention for variables accessed by both interrupt service routines and the main program; and use real-time scheduling theory to discharge timing requirements on interruptible program code.
Resumo:
For pedagogical change to be sustained over time, and over the span of higher education courses, it needs to be framed widely, rather than ‘tacked on’. The framing includes curriculum reform and resource provision alongside staff pedagogical development. This is especially true for initiatives (such as reflective writing and assessment) that target broad-based, high-level skills and dispositions. For various reasons, such initiatives can easily become lost because of the discipline-specific focus of a syllabus outweighs the initiative, or because lack of resources compromises a desired approach. Course improvement in higher education contexts is typically difficult and episodic. In such circumstances, we argue that a strategic and trustworthy approach is necessary where practitioner-lead pedagogic development is fostered through trust and communication and is purposefully embedded within key dimensions of curriculum integration and resource provision. This chapter describes an approach to pedagogical change where curriculum, pedagogy and resources are simultaneously and collaboratively orchestrated to provide an effective framework for sustainable and effective change. A robust conceptual model is proposed to guide the implementation of such change.
Resumo:
Language-rich environments are key to overall quality in early childhood settings, including frequent child–staff interactions around picture books and dramatic play. In a language-rich environment, explicit teaching of literacy concepts, such as phonics, is embedded in authentic and meaningful situations where alphabet letters and sounds are taught in a context meaningful to the child. Recent research, however, suggests that the use of commercial pre-packaged phonics programs (such as Letterland and Jolly Phonics) is widespread in prior to school settings in Sydney, Australia. Little is known about why early childhood teachers choose to use such programs with children aged five and under. In the present study, thematic analysis of data from interviews with five early childhood teachers using commercial phonics programs found that their reasons were pragmatic rather than pedagogical. Motivations included the idea that the programs reduced their workload, provided tangible evidence to parents of their child’s ‘school readiness’, and served as a marketing tool to attract parents. Further analysis found that the teachers were unable to articulate what phonics and phonological awareness are and how they are learnt in early childhood.
Resumo:
Embedded many-core architectures contain dozens to hundreds of CPU cores that are connected via a highly scalable NoC interconnect. Our Multiprocessor-System-on-Chip CoreVAMPSoC combines the advantages of tightly coupled bus-based communication with the scalability of NoC approaches by adding a CPU cluster as an additional level of hierarchy. In this work, we analyze different cluster interconnect implementations with 8 to 32 CPUs and compare them in terms of resource requirements and performance to hierarchical NoCs approaches. Using 28nm FD-SOI technology the area requirement for 32 CPUs and AXI crossbar is 5.59mm2 including 23.61% for the interconnect at a clock frequency of 830 MHz. In comparison, a hierarchical MPSoC with 4 CPU cluster and 8 CPUs in each cluster requires only 4.83mm2 including 11.61% for the interconnect. To evaluate the performance, we use a compiler for streaming applications to map programs to the different MPSoC configurations. We use this approach for a design-space exploration to find the most efficient architecture and partitioning for an application.
Resumo:
With proliferation of chip multicores (CMPs) on desktops and embedded platforms, multi-threaded programs have become ubiquitous. Existence of multiple threads may cause resource contention, such as, in on-chip shared cache and interconnects, depending upon how they access resources. Hence, we propose a tool - Thread Contention Predictor (TCP) to help quantify the number of threads sharing data and their sharing pattern. We demonstrate its use to predict a more profitable shared, last level on-chip cache (LLC) access policy on CMPs. Our cache configuration predictor is 2.2 times faster compared to the cycle-accurate simulations. We also demonstrate its use for identifying hot data structures in a program which may cause performance degradation due to false data sharing. We fix layout of such data structures and show up-to 10% and 18% improvement in execution time and energy-delay product (EDP), respectively.
Resumo:
Predictability -- the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements -- is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is the Time-constrained Reactive Automaton (TRA) formalism, which adopts a fundamental notion of space and time that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Using the TRA model, unrealistic systems – possessing properties such as clairvoyance, caprice, infinite capacity, or perfect timing -- cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems -- not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed. The TRA model is presented to system developers through the Cleopatra programming language. Cleopatra features a C-like imperative syntax for the description of computation, which makes it easier to incorporate in applications already using C. It is event-driven, and thus appropriate for embedded process control applications. It is object-oriented and compositional, thus advocating modularity and reusability. Cleopatra is semantically sound; its objects can be transformed, mechanically and unambiguously, into formal TRA automata for verification purposes, which can be pursued using model-checking or theorem proving techniques. Since 1989, an ancestor of Cleopatra has been in use as a specification and simulation language for embedded time-critical robotic processes.
Resumo:
Annotation of programs using embedded Domain-Specific Languages (embedded DSLs), such as the program annotation facility for the Java programming language, is a well-known practice in computer science. In this paper we argue for and propose a specialized approach for the usage of embedded Domain-Specific Modelling Languages (embedded DSMLs) in Model-Driven Engineering (MDE) processes that in particular supports automated many-step model transformation chains. It can happen that information defined at some point, using an embedded DSML, is not required in the next immediate transformation step, but in a later one. We propose a new approach of model annotation enabling flexible many-step transformation chains. The approach utilizes a combination of embedded DSMLs, trace models and a megamodel. We demonstrate our approach based on an example MDE process and an industrial case study.
Resumo:
The Layout of My Thesis This thesis contains three chapters in Industrial Organization that build on the work outlined above. The first two chapters combine leniency programs with multimarket contact and provide a thorough analysis of the potential effects of Amnesty Plus and Penalty Plus. The third chapter puts the whole discussion on leniency programs into perspective by examining other enforcement tools available to an antitrust authority. The main argument in that last chapter is that a specific instrument can only be as effective as the policy in which it is embedded. It is therefore important for an antitrust authority to know how it best accompanies the introduction or modification of a policy instrument that helps deterrence. INTRODUCTION Chapter 1 examines the efféct of Amnesty Plus and Penalty Plus on the incentives of firms to report cartel activities. The main question is whether the inclusion of these policies in a leniency program undermine the effectiveness of the latter by discouraging the firms to apply for amnesty. The model is static and focus on the ex post incentives of firms to desist from collusion. The results suggest that, because Amnesty Plus and Penalty Plus encourage the reporting of a second cartel after a first detection, a firm, anticipating this, may be reluctant to seek leniency and to report in the first place. However, the effect may also go in the opposite direction, and Amnesty Plus and Penalty Plus may encourage the simultaneous reporting of two cartels. Chapter 2 takes this idea further to the stage of cartel formation. This chapter provides a complete characterization of the potential anticompetitive and procompetitive effects of Amnesty Plus in a infinitely repeated game framework when the firms use their multimarket contact to harshen punishment. I suggest a clear-cut policy rule that prevents potential adverse effects and thereby show that, if policy makers follow this rule, a leniency program with Amnesty Plus performs better than one without. Chapter 3 characterizes the socially optimal enforcement effort of an antitrust authority and shows how this effort changes with the introduction or modification of specific policy instruments. The intuition is that the policy instrument may increase the marginal benefit of conducting investigations. If this effect is strong enough, a more rigorous detection policy becomes socially desirable.
Resumo:
Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.This dissertation contributes to an architecture oriented code validation, error localization and optimization technique assisting the embedded system designer in software debugging, to make it more effective at early detection of software bugs that are otherwise hard to detect, using the static analysis of machine codes. The focus of this work is to develop methods that automatically localize faults as well as optimize the code and thus improve the debugging process as well as quality of the code.Validation is done with the help of rules of inferences formulated for the target processor. The rules govern the occurrence of illegitimate/out of place instructions and code sequences for executing the computational and integrated peripheral functions. The stipulated rules are encoded in propositional logic formulae and their compliance is tested individually in all possible execution paths of the application programs. An incorrect sequence of machine code pattern is identified using slicing techniques on the control flow graph generated from the machine code.An algorithm to assist the compiler to eliminate the redundant bank switching codes and decide on optimum data allocation to banked memory resulting in minimum number of bank switching codes in embedded system software is proposed. A relation matrix and a state transition diagram formed for the active memory bank state transition corresponding to each bank selection instruction is used for the detection of redundant codes. Instances of code redundancy based on the stipulated rules for the target processor are identified.This validation and optimization tool can be integrated to the system development environment. It is a novel approach independent of compiler/assembler, applicable to a wide range of processors once appropriate rules are formulated. Program states are identified mainly with machine code pattern, which drastically reduces the state space creation contributing to an improved state-of-the-art model checking. Though the technique described is general, the implementation is architecture oriented, and hence the feasibility study is conducted on PIC16F87X microcontrollers. The proposed tool will be very useful in steering novices towards correct use of difficult microcontroller features in developing embedded systems.
Resumo:
We present a type-based approach to statically derive symbolic closed-form formulae that characterize the bounds of heap memory usages of programs written in object-oriented languages. Given a program with size and alias annotations, our inference system will compute the amount of memory required by the methods to execute successfully as well as the amount of memory released when methods return. The obtained analysis results are useful for networked devices with limited computational resources as well as embedded software.
Resumo:
A digital-desk pilot program, named One Laptop Per Child (OPLC), in Brazil uses a unique display design to provide an interactive interface developed to enhance education and minimize ergonomic concerns. The one-to-one computer strategy as proposed by Nicholas Negroponte is a way of circumventing the tragedy of the locked computer lab because it gives children full access to computers anytime. The OLPC program has focused on a solution that minimizes power consumption, which also limits the display's maximum size and processor performance because the LCD backlights are responsible for a significant part of the power consumption in laptops. The government has also developed a new type of low-cost tablet that is based on a resistive principle. High transparencies can be obtained in the 90% range in the tablet, while robustness is guaranteed by the outstanding tribological characteristics of Sn02 on glass.