969 resultados para Embedded Atom Method (Eam)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nearest-neighbour Lennard-Jones potential from the embedded-atom method is extended to a form that includes more than nearest neighbours. The model has been applied to study melting with molecular dynamics. The calculated melting point, fractional volume change on melting, heat of fusion and linear coefficients of thermal expansion are in good agreement with experimental data. We have found that the second and third neighbours influence the melting point distinctly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM), a molecular dynamics (MD) simulation is performed to study the single-crystal copper nanowire with surface defects through tension. The tension simulations for nanowire without defect are first carried out under different temperatures, strain rates and time steps and then surface defect effects for nanowire are investigated. The stress-strain curves obtained by the MD simulations of various strain rates show a rate below 1 x 10(9) s-1 will exert less effect on the yield strength and yield point, and the Young's modulus is independent of strain rate. a time step below 5 fs is recommend for the atomic model during the MD simulation. It is observed that high temperature leads to low Young's modulus, as well as the yield strength. The surface defects on nanowires are systematically studied in considering different defect orientations. It is found that the surface defect serves as a dislocation source, and the yield strength shows 34.20% decresse with 45 degree surface defect. Both yield strength and yield point are significantly influenced by the surface defects, except the Young's modulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the deformation properties of Cu nanowires with different single defects under dynamic compression have been studied. The mechanical behaviours of the perfect nanowire are first studied, and the critical stress decreases with the increase of the nanowire’s length, which is well agreed with the modified Euler theory. We then consider the effects to the buckling phenomenon resulted from different defects. It is found that obvious decrease of the critical stress is resulted from different defects, and the largest decrease is found in nanowire with the surface vertical defect. Surface defects are found exerting larger influence than internal defects. The buckling duration is found shortened due to different defects except the nanowire with surface horizon defect, which is also found possessing the largest deflection. Different deflections are also observed for different defected nanowires. It is find that due to surface defects, only deflection in one direction is happened, but for internal defects, more complex deflection circumstances are observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the mono-crystalline copper with different defects is investigated through tension and nanoindentation simulation. The single-crystal copper nanowire with surface defects is firstly studied through tension. For validation, the tension simulations for nanowire without defect are carried out under different temperatures and strain rates. The defects on nanowires are then systematically studied in considering different defects orientation distribution. It is found that the Young’s modulus is insensitive of surface defects and centro-plane defects. However, the yield strength and yield point show a significant decrease due to the different defects. Specially, the 〖45〗^° defect in surface and in (200) plane exerts the biggest influence to the yield strength, about 34.20% and 51.45% decrease are observed, respectively. Different defects are observed to serve as a dislocation source and different necking positions of the nanowires during tension are found. During nanoindentation simulation, dislocation is found nucleating below the contact area, but no obvious dislocation is generated around the nano-cavity. Comparing with the perfect substrate during nanoindentation, the substrate with nano-cavities emerged less dislocations, it is supposed that the nano-cavity absorbed part of the indent energy, and less plastic deformation happened in the defected substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, in this paper, the tensile deformation properties of Cu nanowires (NWs) with different pre-existing defects, including single surface defects, surface bi-defects and single internal defects, are systematically studied. In-depth deformation mechanisms of NWs with pre-existing defects are also explored. It is found that Young's modulus is insensitive to different pre-existing defects, but yield strength shows an obvious decrease. Defects are observed influencing greatly on NWs' tensile deformation mechanisms, and playing a role of dislocation sources. Besides of the traditional deformation process dominated by the nucleation and propagation of partial dislocations, the generations of twins, grain boundaries, fivefold deformation twins, hexagonal close-packed (HCP) structure and phase transformation from face-centred cubic (FCC) structure to HCP structure have been triggered by pre-existing defects. It is found that surface defect intends to induce larger influence to yield strength than internal defect. Most importantly, the defect that lies on slip planes exerts larger influence than other defects. As expected, it is also found that the more or longer of the defect, the bigger influence will be induced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced B2 -> body-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of similar to 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of similar to 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 angstrom, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, the size and strain rate effects on ultra-thin < 100 >/{100} Cu nanowires at an initial temperature of 10 K have been discussed. Extensive molecular dynamics (MD) simulations have been performed using Embedded atom method (EAM) to investigate the structural behaviours and properties under high strain rate. Velocity-Verlet algorithm has been used to solve the equation of motions. Two different thermal loading cases have been considered: (i) Isothermal loading, in which Nose-Hoover thermostat is used to maintain the constant system temperature, and (ii) Adiabatic loading, i.e., without any thermostat. Five different wire cross-sections were considered ranging from 0.723 x 0.723 nm(2) to 2.169 x 2.169 nm(2) The strain rates used in the present study were 1 x 10(9) s(-1), 1 x 10(8) s(-1), and 1 x 10(7) s(-1). The effect of strain rate on the mechanical properties of copper nanowires was analysed, which shows that elastic properties are independent of thermal loading for a given strain rate and cross-sectional dimension of nanowire. It showed a decreasing yield stress and yield strain with decreasing strain rate for a given cross- section. Also, a decreasing yield stress and increasing yield strain were observed for a given strain rate with increasing cross-sectional area. Elastic modulus was found to be similar to 100 GPa, which was independent of processing temperature, strain rate, and size for a given initial temperature. Reorientation of < 100 >/{100} square cross-sectional copper nanowire into a series of stable ultra-thin Pentagon copper nanobridge structures with dia of similar to 1 nm at 10 K was observed under high strain rate tensile loading. The effect of isothermal and adiabatic loading on the formation of such pentagonal nanobridge structure has been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Size-dependent elastic properties of Ni nanofilms are investigated by molecular dynamics ( MD) simulations with embedded atom method (EAM). The surface effects are considered by calculating the surface relaxation, surface energy, and surface stress. The Young's modulus and yield stress are obtained as functions of thickness and crystallographic orientation. It is shown that the surface relaxation has important effects on the the elastic properties at nanoscale. When the surface relaxation is outward, the Young's modulus decreases with the film thickness decreasing, and vice versa. The results also show that the yield stresses of the films increase with the films becoming thinner. With the thickness of the nanofilms decreasing, the surface effects on the elastic properties become dominant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) proposed by Daw and Baskes and Johnson's model, this paper constructs a new N-body potential for bcc crystal Mo. The procedure of constructing the new N-body potential can be applied to other metals. The dislocation emission from a crack tip has been simulated successfully using molecular dynamics method, the result is in good agreement with the elastic solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gliding behavior of edge dislocation near a grain boundary(QB) in copper under pure shear stresses is simulated by using molecular dynamics(MD) method. Many-body potential incorporating the embedded atom method (EAM) is used. The critical shear stresses for a single disocation to pass across GB surface are obtained at values of sigma(c)=23MPa similar to 68 MPa and 137 MPa similar to 274 MPa for Sigma=165 small angle tilt GB at 300 K and 20 K, respectively. The first result agrees with the experimental yield stress sigma(y)(=42 MPa) quite well. It suggests that there might be one of the reasons of initial plastic yielding caused by single dislocation gliding across GB. In addition, there might be possibility to obtain yield strength from microscopic analysis. Moreover, the experimental value of sigma(y) at low temperature is generally higher than that at room temperature. So, these results are in conformity qualitatively with experimental fact. On the other hand, the Sigma=25 GB is too strong an obstacle to the dislocation. In this case, a dislocation is able to pass across GB under relatively low stress only when it is driven by other dislocations. This is taken to mean that dislocation pile-up must be built up in front of this kind of GB, if this GB may take effect on the process of plastic deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Size-dependent elastic properties of Ni nanofilms are investigated by molecular dynamics ( MD) simulations with embedded atom method (EAM). The surface effects are considered by calculating the surface relaxation, surface energy, and surface stress. The Young's modulus and yield stress are obtained as functions of thickness and crystallographic orientation. It is shown that the surface relaxation has important effects on the the elastic properties at nanoscale. When the surface relaxation is outward, the Young's modulus decreases with the film thickness decreasing, and vice versa. The results also show that the yield stresses of the films increase with the films becoming thinner. With the thickness of the nanofilms decreasing, the surface effects on the elastic properties become dominant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volume(density)-independent pair-potentials cannot describe metallic cohesion adequately as the presence of the free electron gas renders the total energy strongly dependent on the electron density. The embedded atom method (EAM) addresses this issue by replacing part of the total energy with an explicitly density-dependent term called the embedding function. Finnis and Sinclair proposed a model where the embedding function is taken to be proportional to the square root of the electron density. Models of this type are known as Finnis-Sinclair many body potentials. In this work we study a particular parametrization of the Finnis-Sinclair type potential, called the "Sutton-Chen" model, and a later version, called the "Quantum Sutton-Chen" model, to study the phonon spectra and the temperature variation thermodynamic properties of fcc metals. Both models give poor results for thermal expansion, which can be traced to rapid softening of transverse phonon frequencies with increasing lattice parameter. We identify the power law decay of the electron density with distance assumed by the model as the main cause of this behaviour and show that an exponentially decaying form of charge density improves the results significantly. Results for Sutton-Chen and our improved version of Sutton-Chen models are compared for four fcc metals: Cu, Ag, Au and Pt. The calculated properties are the phonon spectra, thermal expansion coefficient, isobaric heat capacity, adiabatic and isothermal bulk moduli, atomic root-mean-square displacement and Gr\"{u}neisen parameter. For the sake of comparison we have also considered two other models where the distance-dependence of the charge density is an exponential multiplied by polynomials. None of these models exhibits the instability against thermal expansion (premature melting) as shown by the Sutton-Chen model. We also present results obtained via pure pair potential models, in order to identify advantages and disadvantages of methods used to obtain the parameters of these potentials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New parameters of nearest-neighbor EAM (1N-EAM), n-th neighbor EAM (NN-EAM), and the second-moment approximation to the tight-binding (TB-SMA) potentials are obtained by fitting experimental data at different temperatures. In comparison with the available many-body potentials, our results suggest that the 1N-EAM potential with the new parameters is the best description of atomic interactions in studying the thermal expansion of noble metals. For mechanical properties, it is suggested that the elastic constants should be calculated in the experimental zero-stress states for all three potentials. Furthermore, for NNEAM and TB-SMA potentials, the calculated results approach the experimental data as the range of the atomic interaction increases from the first-neighbor to the sixth-neighbor distance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and magnetic properties of thin Mn films on the Fe(001) surface have been investigated by a combination of photoelectron spectroscopy and computer simulation in the temperature range 300 Kless than or equal toTless than or equal to750 K. Room-temperature as deposited Mn overlayers are found to be ferromagnetic up to 2.5-monolayer (ML) coverage, with a magnetic moment parallel to that of the iron substrate. The Mn atomic moment decreases with increasing coverage, and thicker samples (4-ML and 4.5-ML coverage) are antiferromagnetic. Photoemission measurements performed while the system temperature is rising at constant rate (dT/dtsimilar to0.5 K/s) detect the first signs of Mn-Fe interdiffusion at T=450 K, and reveal a broad temperature range (610 Kless than or equal toTless than or equal to680 K) in which the interface appears to be stable. Interdiffusion resumes at Tgreater than or equal to680 K. Molecular dynamics and Monte Carlo simulations allow us to attribute the stability plateau at 610 Kless than or equal toTless than or equal to680 K to the formation of a single-layer MnFe surface alloy with a 2x2 unit cell and a checkerboard distribution of Mn and Fe atoms. X-ray-absorption spectroscopy and analysis of the dichroic signal show that the alloy has a ferromagnetic spin structure, collinear with that of the substrate. The magnetic moments of Mn and Fe atoms in the alloy are estimated to be 0.8mu(B) and 1.1mu(B), respectively.