909 resultados para Ellis shale


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this investigation was to attempt to find some means of increasing the effective porosity and permeabil­ity of the producing sands of the Cut Bank Oil Field, with the hope that thereby the ultimate recovery of petroleum from this field may be increased. Although the percentage increase in production thus effected would undoubtedly be small, it would represent a substantial volume of petroleum in view of the great quantity of oil and gas present in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Batch, column and field lysimeter studies have been conducted to evaluate the concept of codisposal of retort water with Rundle (Queensland, Australia) waste shales. The batch studies indicated that degradation of a significant proportion of the total organic load occurs if the mixture is seeded with soil or compost. These results are compared with those from laboratory column studies and from the field lysimeter at the Rundle site. G.c.-m.s. analysis of some of the eluants indicated that significant degradation of the base-neutral fraction occurs even if no soil seed is added, and that degradation of this fraction was higher under anaerobic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review examines five books in the Oxford Business English Express Series, including "English for telecoms and information technology" by T. Ricca and M. Duckworth; "English for legal professionals" by A. Frost; "English for the pharmaceutical industry" by M. Buchler, K. Jaehnig, G. Matzig, and T. Weindler; "English for cabin crews" by S. Ellis and L. Lansford; and "English for negotiating" by C. Lafond, S. Vine, and B. Welch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small-angle and ultra-small-angle neutron scattering (SANS and USANS), low-pressure adsorption (N2 and CO2), and high-pressure mercury intrusion measurements were performed on a suite of North American shale reservoir samples providing the first ever comparison of all these techniques for characterizing the complex pore structure of shales. The techniques were used to gain insight into the nature of the pore structure including pore geometry, pore size distribution and accessible versus inaccessible porosity. Reservoir samples for analysis were taken from currently-active shale gas plays including the Barnett, Marcellus, Haynesville, Eagle Ford, Woodford, Muskwa, and Duvernay shales. Low-pressure adsorption revealed strong differences in BET surface area and pore volumes for the sample suite, consistent with variability in composition of the samples. The combination of CO2 and N2 adsorption data allowed pore size distributions to be created for micro–meso–macroporosity up to a limit of �1000 Å. Pore size distributions are either uni- or multi-modal. The adsorption-derived pore size distributions for some samples are inconsistent with mercury intrusion data, likely owing to a combination of grain compression during high-pressure intrusion, and the fact that mercury intrusion yields information about pore throat rather than pore body distributions. SANS/USANS scattering data indicate a fractal geometry (power-law scattering) for a wide range of pore sizes and provide evidence that nanometer-scale spatial ordering occurs in lower mesopore–micropore range for some samples, which may be associated with inter-layer spacing in clay minerals. SANS/USANS pore radius distributions were converted to pore volume distributions for direct comparison with adsorption data. For the overlap region between the two methods, the agreement is quite good. Accessible porosity in the pore size (radius) range 5 nm–10 lm was determined for a Barnett shale sample using the contrast matching method with pressurized deuterated methane fluid. The results demonstrate that accessible porosity is pore-size dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shale is an increasingly important source of natural gas in the United States. The gas is held in fine pores that need to be accessed by horizontal drilling and hydrofracturing techniques. Understanding the nature of the pores may provide clues to making gas extraction more efficient. We have investigated two Mississippian Barnett Shale samples, combining small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) to determine the pore size distribution of the shale over the size range 10 nm to 10 μm. By adding deuterated methane (CD4) and, separately, deuterated water (D2O) to the shale, we have identified the fraction of pores that are accessible to these compounds over this size range. The total pore size distribution is essentially identical for the two samples. At pore sizes >250 nm, >85% of the pores in both samples are accessible to both CD4 and D2O. However, differences in accessibility to CD4 are observed in the smaller pore sizes (∼25 nm). In one sample, CD4 penetrated the smallest pores as effectively as it did the larger ones. In the other sample, less than 70% of the smallest pores (<25 nm) were accessible to CD4, but they were still largely penetrable by water, suggesting that small-scale heterogeneities in methane accessibility occur in the shale samples even though the total porosity does not differ. An additional study investigating the dependence of scattered intensity with pressure of CD4 allows for an accurate estimation of the pressure at which the scattered intensity is at a minimum. This study provides information about the composition of the material immediately surrounding the pores. Most of the accessible (open) pores in the 25 nm size range can be associated with either mineral matter or high reflectance organic material. However, a complementary scanning electron microscopy investigation shows that most of the pores in these shale samples are contained in the organic components. The neutron scattering results indicate that the pores are not equally proportioned in the different constituents within the shale. There is some indication from the SANS results that the composition of the pore-containing material varies with pore size; the pore size distribution associated with mineral matter is different from that associated with organic phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os folhelhos pretos devonianos da Formação Barreirinha caracterizamse pela alta radioatividade na porção basal, grande extensão areal, espessura e profundidade de soterramento variável que vão de exposição na superfície até mais de 3000 m. Eles são as principais rochas geradoras do sistema petrolífero convencional da Bacia do Amazonas, e recentemente foram consideradas como promissores plays de gás não convencional. Folhelhos são geralmente caracterizados por uma matriz fechada, que faz com que sejam relativamente impermeáveis em relação ao fluxo de gás, a menos que ocorram fraturas, e dependendo das suas características geológicas e geoquímicas podem funcionar com um Sistema Petrolífero autossuficiente, atuando tanto como rocha fonte, quanto como reservatório de gás (reservatório Shale Gas). Assim, o gás natural termogênico ou biogênico gerado pode ser armazenado em folhelhos ricos em matéria orgânica na forma livre, adsorvida, ou em estado dissolvido. Em contraste com os sistemas petrolíferos convencionais, reservatórios Shale Gas, possuem mecanismos de aprisionamento e armazenamento únicos, sendo necessária a utilização de técnicas de avaliações específicas. No entanto, folhelhos prolíficos geralmente podem ser reconhecidos a partir de alguns parâmetros básicos: arquitetura geológica e sedimentar, propriedades geoquímicas e petrofísicas e composição mineralógica. Tendo em vista a carência de pesquisas de caráter descritivo, com cunho exploratório dos folhelhos geradores da Formação Barreirinha, esta dissertação tem como objetivo introduzir uma metodologia de identificação de intervalos de folhelho gerador com potencial para reservatório Shale Gas. Começando com uma investigação regional sobre o contexto geológico e sedimentar, seguido de uma avaliação abrangente enfocando as características geoquímicas, petrofísicas e litofácies dos folhelhos a partir da integração de parâmetros obtidos de perfis geofísicos de poço, análises geoquímicas e aplicação dos conceitos de Estratigrafia de Sequencia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes reaction and thermal front development in porous reservoirs with reacting flows, such as those encountered in shale oil extraction. A set of dimensionless parameters and a 3D code are developed in order to investigate the important physical and chemical variables of such reservoirs when heated by in situ methods. This contribution builds on a 1D model developed for the precursor study to this work. Theory necessary for this study is presented, namely shale decomposition chemical mechanisms, governing equations for multiphase flow in porous media and necessary closure models. Plotting the ratio of the thermal wave speed to the fluid speed allows one to infer that the reaction wave front ends where this ratio is at a minimum. The reaction front follows the thermal front closely, thus allowing assumptions to be made about the extent of decomposition solely by looking at thermal wave progression. Furthermore, this sensitivity analysis showed that a certain minimum permeability is required in order to ensure the formation of a traveling thermal wave. It was found that by studying the non-dimensional governing parameters of the system one can ascribe characteristic values for these parameters for given initial and boundary conditions. This allows one to roughly predict the performance of a particular method on a particular reservoir given approximate values for initial and boundary conditions. Channelling and flow blockage due to carbon residue buildup impeded each method's performance. Blockage was found to be a result of imbalanced heating. Copyright 2012, Society of Petroleum Engineers.