517 resultados para Elettrolizzatore,PEM,Elettrolisi,Idrogeno
Resumo:
Questo elaborato di tesi si occupa dell’analisi di sistemi di produzione dell’idrogeno mediante elettrolisi, con un particolare approfondimento sugli elettrolizzatori di tipo PEM. L’elaborato si concentra sullo studio delle fonti rinnovabili non programmabili per la produzione di energia elettrica, con il relativo utilizzo di sistemi di accumulo. Dopo un accurato studio sui vari sistemi di accumulo esistenti viene elaborato un modello al fine di poter effettuare un analisi di tipo black box su varie tipologie di elettrolizzatori PEM presenti sul mercato.
Resumo:
La tesi tratta funzionamento, ottimizzazione e applicazioni delle celle a combustibile PEM (PEM Fuel cells) che sono dispositivi capaci di convertire reversibilmente l’energia chimica contenuta nel combustibile in energia elettrica, energia termica e prodotti di reazione. Vengono analizzati gli effetti di temperatura, pressione e umidità sulla cinetica, sulle prestazioni, sull’OCV, sulla conduttività della membrana e sul trasferimento di massa. In generale, per utilizzare una cella a combustibile PEM, ogni componente, materiale e l'assemblaggio delle celle dovrebbe essere realizzabile e ottimizzato per ottenere alte prestazioni. Vengono, quindi, trattate le tecniche di test e diagnosi che rappresentano il modo più popolare e affidabile per convalidare i progetti di questi componenti e della cella combustibile stessa. Inoltre, si affronta il discorso sull’idrogeno definito come vettore di energia che ha assunto un ruolo di primo piano per un mercato a basse emissioni; infatti ha un grande potenziale come combustibile alternativo e assume un ruolo centrale nello scenario energetico del futuro. Infine, si parla anche di applicazioni pratiche ed esistenti riguardanti le celle a combustibile in veicoli, come le proposte di Nuvera ed EH Group.
Resumo:
Nell’ambito di un progetto di ricerca sui sistemi di accumulo dell’energia elettrica, in corso di avvio al “Laboratorio di microreti di generazione e accumulo” di Ravenna, è stato sviluppato un modello di calcolo in grado di simulare il comportamento di un elettrolizzatore.Il comportamento di un generico elettrolizzatore è stato modellato mediante una serie di istruzioni e relazioni matematiche, alcune delle quali ricavate tramite un’analisi dettagliata della fisica del processo di elettrolisi, altre ricavate empiricamente sulla base delle prove sperimentali e dei dati presenti nella bibliografia. Queste espressioni sono state implementate all’interno di un codice di calcolo appositamente sviluppato, realizzato in linguaggio Visual Basic, che sfrutta come base dati i fogli di calcolo del software Microsoft Excel per effettuare la simulazione. A partire dalle caratteristiche dell’elettrolizzatore (pressione e temperatura di esercizio, dimensione degli elettrodi, numero di celle e fattore di tuning, più una serie di coefficienti empirici) e dell’impianto generale (potenza elettrica disponibile e pressione di stoccaggio), il modello è in grado di calcolare l’idrogeno prodotto e l’efficienza globale di produzione e stoccaggio. Il modello sviluppato è stato testato sia su di un elettrolizzatore alcalino, quello del progetto PHOEBUS, basato su una tecnologia consolidata e commercialmente matura, sia su di un apparecchio sperimentale di tipo PEM in fase di sviluppo: in entrambi i casi i risultati forniti dal modello hanno trovato pieno riscontro coi dati sperimentali.
Resumo:
Le fonti di energia rinnovabili rappresentano una forma di energia indispensabile al sostentamento dell’attuale sistema produttivo mondiale. L’energia eolica e fotovoltaica ricoprono un ruolo fondamentale nel panorama rinnovabile, e portano con se l’inevitabile svantaggio derivato dall’impossibilita di controllare la fonte primaria di energia. I sistemi di accumulo ed immagazzinamento di energia assumeranno un ruolo strategico nel prossimo scenario energetico, in particolare nell’elaborato viene posta l’attenzione sui sistemi Power-to-Gas. La tecnologia Power-to-Gas consente di produrre gas ad alta potenza specifica (idrogeno o metano sintetico), usando elettricità proveniente da fonti rinnovabili. L’elettrolisi è il metodo più efficiente per convertire energia elettrica in idrogeno. Tra le varie tecnologie, gli elettrolizzatori di tipologia PEM (Proton Exchange Membrane), sono considerati i più adatti all’accoppiamento con fonti di energia rinnovabile, per via della loro risposta alle variazioni di carico e dell’ampio campo di funzionamento. Il lavoro di tesi si concentra sull’analisi delle prestazioni di elettrolizzatori tipo PEM, ed in particolare sull’elettrolizzatore inserito all’interno del “Laboratorio di Microreti di Generazione ed Accumulo” del Tecnopolo di Ravenna. Il laboratorio ha lo scopo di studiare e testare sistemi per la produzione di energia elettrica da fonte rinnovabile e per l’accumulo. L’impianto è costituito principalmente da due pannelli fotovoltaici con il compito di produrre energia, due batterie per accumulare l’energia prodotta dai pannelli, un elettrolizzatore e tre bombole a idruri metallici per lo stoccaggio di idrogeno. Dai dati sperimentali ottenuti dalle prove in laboratorio si è ricavato un modello matematico black-box dell’elettrolizzatore. Il modello gestisce le equazioni della curva caratteristica (P;η). In seguito il modello ottenuto è stato confrontato con un caso analogo presente in letteratura.
Resumo:
Nel corso degli anni le fonti rinnovabili e in particolare il fotovoltaico hanno assunto un ruolo sempre più importante nel panorama energetico italiano. Si è effettuata un’analisi della tecnologia fotovoltaica illustrandone il funzionamento, le tipologie di pannelli, il calcolo dell’energia elettrica producibile e le curve caratteristiche. Dal momento che la maggior parte delle rinnovabili presenta il problema della non programmabilità dovuta alla produzione intermittente, è necessario adottare dei sistemi di accumulo. Tali sistemi vengono mostrati, con particolare riguardo per le batterie al piombo acido e per l’idrogeno immagazzinato in idruri metallici, spiegando nel dettaglio l’elettrolisi e gli elettrolizzatori PEM. Dopo questa panoramica iniziale, si è illustrato l’impianto oggetto di questa tesi, composto principalmente da due pannelli fotovoltaici, un simulatore solare, due batterie al Piombo, un elettrolizzatore, un carico e un alimentatore. In seguito viene spiegata l’attività sperimentale, svolta sulle prove di laboratorio ai fini di ottenere le curve di funzionamento dei vari componenti, tramite due approcci diversi: per il sistema atto all’elettrolisi e per tutti i suoi componenti si è usato un modello black-box, per i pannelli fotovoltaici si è usato un approccio fisico-matematico partendo dalle equazioni del simulatore solare applicandovi i dati dei pannelli del laboratorio. Una volta ottenute queste curve, si è creato un modello completo del laboratorio per simularne il funzionamento al variare dell’irraggiamento. Si è testato prima il modello su un’utenza da 3 kW, poi, dopo aver confrontato gli andamenti reali con quelli ottenuti, si sono simulate varie configurazioni per trovare quella che permette al sistema di produrre idrogeno alla potenza nominale di 250 W in una giornata senza supplemento della rete elettrica.
Resumo:
L’H2 è attualmente un elemento di elevato interesse economico, con notevoli prospettive di sviluppo delle sue applicazioni. La sua produzione industriale supera attualmente i 55 ∙ 1010 m3/anno, avendo come maggiori utilizzatori (95% circa) i processi di produzione dell’ammoniaca e quelli di raffineria (in funzione delle sempre più stringenti normative ambientali). Inoltre, sono sempre più importanti le sue applicazioni come vettore energetico, in particolare nel settore dell’autotrazione, sia dirette (termochimiche) che indirette, come alimentazione delle fuel cells per la produzione di energia elettrica. L’importanza economica degli utilizzi dell’ H2 ha portato alla costruzione di una rete per la sua distribuzione di oltre 1050 km, che collega i siti di produzione ai principali utilizzatori (in Francia, Belgio, Olanda e Germania). Attualmente l’ H2 è prodotto in impianti di larga scala (circa 1000 m3/h) da combustibili fossili, in particolare metano, attraverso i processi di steam reforming ed ossidazione parziale catalitica, mentre su scala inferiore (circa 150 m3/h) trovano applicazione anche i processi di elettrolisi dell’acqua. Oltre a quella relativa allo sviluppo di processi per la produzione di H2 da fonti rinnovabili, una tematica grande interesse è quella relativa al suo stoccaggio, con una particolare attenzione ai sistemi destinati alle applicazioni nel settore automotivo o dei trasposti in generale. In questo lavoro di tesi, svolto nell’ambito del progetto europeo “Green Air” (7FP – Transport) in collaborazione (in particolare) con EADS (D), CNRS (F), Jonhson-Matthey (UK), EFCECO (D), CESA (E) e HyGEAR (NL), è stato affrontato uno studio preliminare della reazione di deidrogenazione di miscele di idrocarburi e di differenti kerosene per utilizzo aereonautico, finalizzato allo sviluppo di nuovi catalizzatori e dei relativi processi per la produzione di H2 “on board” utilizzando il kerosene avio per ottenere, utilizzando fuel cells, l’energia elettrica necessaria a far funzionare tutta la strumentazione ed i sistemi di comando di aeroplani della serie Airbus, con evidenti vantaggi dal punto di vista ponderale e delle emissioni.
Resumo:
Lo scopo di questa tesi è stato la produzione di un elettrolizzatore ad ossidi solidi (SOEC) mediante tecniche economiche e facilmente industrializzabili. Fondamentale a questo scopo è stata la realizzazione di una semicella costituita da un anodo poroso a base di La0.8Sr0.2MnO3-Ce0.8Gd0.2O2-δ (LSM-GDC) ed un elettrolita denso a base di Ce0.8Gd0.2O2-δ (GDC). Le tecniche utilizzate per la produzione di questo sistema sono state il colaggio su nastro e la serigrafia. Anche se generalmente, le celle SOEC vengono prodotte catodo supportate, in questo studio, l’elemento supportante scelto è stato l’anodo poiché questo garantisce una migliore stabilità meccanica all’intera cella. Tale substrato è stato ottenuto mediante colaggio su nastro accoppiato con un metodo innovativo di sinterizzazione denominato sinterizzazione reattiva, processo che prevede la formazione della fase di interesse durante un unico trattamento termico di eliminazione degli additivi organici e consolidamento del manufatto finale. La membrana elettrolitica per l’ottenimento del bilayer anodo-elettrolita, è stata prodotta mediante sia serigrafia che colaggio su nastro. L’accurato studio dell’evoluzione di fase della polvere anodica, l’ottimizzazione della sospensione per colaggio su nastro e dei trattamenti termici hanno permesso l’ottenimento di anodi (fino a dimensioni di 10x10 cm2). Lo studio dei profili di sinterizzazione delle polveri anodica ed elettrolitica e dell’influenza della tecnica di formatura sulla sinterabilità dei layer elettrolitici prodotti hanno inoltre permesso l’ottenimento di una semicella planare costituita da un elettrodo poroso ed una membrana elettrolitica densa adatte per applicazioni SOEC.
Resumo:
Uno studio sulle tecnologie attuali per la produzione di idrogeno, comprensive di membrane per gli elettrolizzatori e stato dell'arte di esse. Assieme a questo una breve valutazione numerica di un impianto con relative componenti.
Resumo:
La domanda energetica mondiale è cresciuta significativamente negli ultimi decenni e la maggior parte dell’energia attualmente prodotta deriva da combustibili fossili. Una delle sfide attuali è quella di ridurre le emissioni di gas serra generate dalla produzione di energia tramite risorse non rinnovabili. A tal riguardo, la ricerca di nuovi vettori energetici e lo sviluppo di nuovi processi per la produzione di energia da risorse rinnovabili costituiscono alcuni tra gli elementi necessari per raggiungere tale obiettivo. L’idrogeno, allo stato attuale, è considerato uno dei vettori energetici più promettenti; tuttavia presenta degli svantaggi a causa delle sue caratteristiche chimico-fisiche. Infatti esso presenta un ampio campo di infiammabilità, una bassa energia di ignizione, delle dimensioni molecolari piccole al punto da renderne complesso il contenimento; inoltre, la bassa densità del fluido causa dei problemi per quanto riguarda lo stoccaggio ed il trasporto. In questo contesto si inserisce il presente lavoro di tesi, che è stato sviluppato durante un tirocinio svolto presso una società di ingegneria operante nel settore “Oil&gas”. Lo scopo di questo elaborato è quello di valutare la possibilità di convertire una condotta attualmente impiegata per il trasporto di gas naturale a idrogenodotto e studiare la fattibilità della produzione e dello stoccaggio di idrogeno ai fini dell’alimentazione a un turbogeneratore per la produzione di energia elettrica. Dopo il Capitolo 1 avente carattere introduttivo, nel Capitolo 2 viene analizzata la possibilità di convertire a idrogenodotto una condotta attualmente impiegata per il trasporto di gas naturale. Nel Capitolo 3 viene valutata la fattibilità dell’acquisto e stoccaggio o dell’autoproduzione e stoccaggio di idrogeno tramite elettrolisi dell’acqua, ai fini dell’alimentazione a un turbogeneratore. Infine, nel Capitolo 4 vengono riportate le conclusioni delle analisi effettuate.
Resumo:
Oscillatory kinetics is commonly observed in the electrocatalytic oxidation of most species that can be used in fuel cell devices. Examples include formic acid, methanol, ethanol, ethylene glycol, and hydrogen/carbon monoxide mixtures, and most papers refer to half-cell experiments. We report in this paper the experimental investigation of the oscillatory dynamics in a proton exchange membrane (PEM) fuel cell at 30 degrees C. The system consists of a Pt/C cathode fed with oxygen and a PtRu (1:1)/C anode fed with H(2) mixed with 100 ppm of CO, and was studied at different cell currents and anode flow rates. Many different states including periodic and nonperiodic series were observed as a function of the cell current and the H(2)/CO flow rate. In general, aperiodic/chaotic states were favored at high currents and low flow rates. The dynamics was further characterized in terms of the relationship between the oscillation amplitude and the subsequent time required for the anode to get poisoned by carbon monoxide. Results are discussed in terms of the mechanistic aspects of the carbon monoxide adsorption and oxidation. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3463725] All rights reserved.
Resumo:
Dissertação apresentada à Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, para a obtenção do grau de Mestre em Energia e Bio-energia
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertation presented at Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa to obtain a Master Degree in Biomedical Engineering