992 resultados para Elemental carbon
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Elemental carbon in urban soils and road dusts in Xi'an, China and its implication for air pollution
Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong
Resumo:
An elemental carbon (EC) record, covering the last 420 ka, was reconstructed using chemical oxidation method on a loess and paleosol sequence from the Lingtai section on the Chinese Loess Plateau. The EC record reveals the paleofire history and its relationship with climate and vegetation changes on the Chinese Loess Plateau. Our results show that the EC abundance is generally higher in the paleosols than in the loess layers, showing a glacial/interglacial pattern, which is coincident with biomass changes. This variation pattern indicates that paleofires were intensified when biomass accumulated and climate changed abruptly especially from wet to dry conditions. The EC abundance increases sharply at similar to 130 kaB.P., indicating a dramatic change in the vegetation and climate variation patterns. The occurrence of a peak value with the highest average EC abundance in the Holocene may reflect the occurrence of a major climate event at similar to 6 kaB.P., and may also be partly due to more frequent anthropogenic fire usages. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Thermal-optical analysis is a conventional method for classifying carbonaceous aerosols as organic carbon (OC) and elemental carbon (EC). This article examines the effects of three different temperature protocols on the measured EC. For analyses of parallel punches from the same ambient sample, the protocol with the highest peak helium-mode temperature (870°C) gives the smallest amount of EC, while the protocol with the lowest peak helium-mode temperature (550°C) gives the largest amount of EC. These differences are observed when either sample transmission or reflectance is used to define the OC/EC split. An important issue is the effect of the peak helium-mode temperature on the relative rate at which different types of carbon with different optical properties evolve from the filter. Analyses of solvent-extracted samples are used to demonstrate that high temperatures (870°C) lead to premature EC evolution in the helium-mode. For samples collected in Pittsburgh, this causes the measured EC to be biased low because the attenuation coefficient of pyrolyzed carbon is consistently higher than that of EC. While this problem can be avoided by lowering the peak helium-mode temperature, analyses of wood smoke dominated ambient samples and levoglucosan-spiked filters indicate that too low helium-mode peak temperatures (550°C) allow non-light absorbing carbon to slip into the oxidizing mode of the analysis. If this carbon evolves after the OC/EC split, it biases the EC measurements high. Given the complexity of ambient aerosols, there is unlikely to be a single peak helium-mode temperature at which both of these biases can be avoided. Copyright © American Association for Aerosol Research.
Resumo:
Attempts were made to measure the fraction of elemental carbon (EC) in ultrafine aerosol by modifying an Ambient Carbonaceous Particulate Monitor (ACPM, R&P 5400). The main modification consisted in placing a quartz filter in one of the sampling lines of this dual-channel instrument. With the filter all aerosol and EC contained in it is collected, while in the other line of the instrument the standard impactor samples only particles larger than 0.14 μm. The fraction of EC in particles smaller than 0.14 μm is derived from the difference in concentration as measured via the two sampling lines. Measurements with the modified instrument were made at a suburban site in Amsterdam, The Netherlands. An apparent adsorption artefact, which could not be eliminated by the use of denuders, precluded meaningful evaluation of the data for total carbon. Blanks in the measurements of EC were negligible and the EC data were hence further evaluated. We found that the concentration of EC obtained via the channel with the impactor was systematically lower than that in the filter-line. The average ratio of the concentrations was close to 0.6, which indicates that approximately 40% of the EC was in particles smaller than 0.14 μm. Alternative explanations for the difference in the concentration in the two sampling lines could be excluded, such as a difference in the extent of oxidation. This should be a function of loading, which is not the case. Another reason for the difference could be that less material is collected by the impactor due to rebound, but such bounce of aerosol is very unlikely in The Netherlands due to co-deposition of abundant deliquesced and thus viscous ammonium compounds. The conclusion is that a further modification to assess the true fraction of ultrafine EC, by installing an impactor with cut-off diameter at 0.1 μm, would be worth pursuing. © 2005 Elsevier Ltd. All rights reserved.