927 resultados para Elemental analysis (EA)
Resumo:
Major and trace elemental composition provides a powerful basis for forensic comparison of soils, sediments and rocks. However, it is important that the potential 'errors' associated with the procedures are fully understood and quantified, and that standard protocols are applied for sample preparation and analysis. This paper describes such a standard procedure and reports results both for instrumental measurement precision (repeatability) and overall 'method' precision (reproducibility). Results obtained both for certified reference materials and example soils show that the instrumental measurement precision (defined by the coefficient of variation, CV) for most elements is better than 2-3%. When different solutions were prepared from the same sample powder, and from different sub-sample powders prepared from the same parent sample, the CV increased to c. 5-6% for many elements. The largest variation was found in results for certified reference materials generated from 23 instrument runs over an 18 month period (mean CV=c. 11%). Some elements were more variable than others. W was found to be the most variable and the elements V, Cr, Co, Cu, Ni and Pb also showed higher than average variability. SiO2, CaO, Al2O3 and Fe2O3, Rb, Sr, La, Ce, Nd and Sm generally showed lower than average variability, and therefore provided the most reliable basis for inter-sample comparison. It is recommended that, whenever possible, samples relating to the same investigation should be analysed in the same sample run, or at least sequential runs.
Resumo:
Pounamu (NZ jade), or nephrite, is a protected mineral in its natural form following the transfer of ownership back to Ngai Tahu under the Ngai Tahu (Pounamu Vesting) Act 1997. Any theft of nephrite is prosecutable under the Crimes Act 1961. Scientific evidence is essential in cases where origin is disputed. A robust method for discrimination of this material through the use of elemental analysis and compositional data analysis is required. Initial studies have characterised the variability within a given nephrite source. This has included investigation of both in situ outcrops and alluvial material. Methods for the discrimination of two geographically close nephrite sources are being developed. Key Words: forensic, jade, nephrite, laser ablation, inductively coupled plasma mass spectrometry, multivariate analysis, elemental analysis, compositional data analysis
Resumo:
The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and (13)C Nuclear Magnetic Resonance ((13)C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Auto-regressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the (13)C NMR spectra clearly differentiates sediment samples closer to the Subae estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A method for the multi-elemental determination of metals (Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Sr and Zn), metalloids (B and Si), and non-metals (Cl, P and 5) in the babassu nut and mesocarp, sapucaia nut, coconut pulp, cupuassu pulp and seed, and cashew nut by axially viewed inductively coupled plasma optical emission spectrometry is presented. A diluted oxidant mixture (2 ml HNO(3) + 1 ml H(2)O(2) + 3 ml H(2)O) was used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The accuracy of the entire proposed method was confirmed by standard reference material analysis (peach leaves-NIST SRM1547). The certified values showed a good agreement at a 95% confidence limit (Student`s t-test). The average RSD for repeatability of calibration solutions measurements were in the range of 1.1-6.7%. Limits of quantification (LOQ = 10 x LOD) were in the level of 0.00072-0.0532 mg/l. The macro and micronutrient ranges in the different nuts and seeds did not exceed the dietary reference intake (DRI), except for Mn in the babassu nut. (C) 2010 Published by Elsevier Ltd.
Resumo:
Elemental composition and spectroscopic properties (FT-IR and CP/MAS C-13-NMR) of sedimentary humic substances (HS) from aquatic subtropical environments (a lake, an estuary and two marine sites) are investigated. Humic acids (HA) are relatively richer in nitrogen and in aliphatic chains than fulvic acids (FA) from the same sediments. Conversely, FA are richer in carboxylic groups and in ring polysaccharides than HA. Nitrogen is mostly present as amide groups and for lake and marine HS the FT-IR peaks around 1640 cm(-1) and 1540 cm(-1) identify polypeptides. Estuarine HS exhibit mixed continental-marine influences, these being highly influenced by site location. Overall, the data suggest that aquatic and mixed HS are more aliphatic than has been proposed in current models and also that amide linkages form an important part of their structural configuration.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The mechanism underlying the mineralization of bone is well studied and yet it remains controversial. Inherent difficulties of imaging mineralized tissues and the aqueous solubility of calcium and phosphate, the 2 ions which combine to form bone mineral crystals, limit current analyses of labile diffusible, amorphous, and crystalline intermediates by electron microscopy. To improve the retention of calcium and phosphorus, we developed a pseudo nonaqueous processing approach and used it to characterize biomineralization foci, extracellular sites of hydroxyapatite deposition in osteoblastic cell cultures. Since mineralization of UMR106-01 osteoblasts is temporally synchronized and begins 78 h after plating, we used these cultures to evaluate the effectiveness of our method when applied to cells just prior to the formation of the first mineral crystals. Our approach combines for the first time 3 well-established methods with a fourth one, i.e. dry ultrathin sectioning. Dry ultrathin sectioning with an oscillating diamond knife was used to produce electron spectroscopic images of mineralized biomineralization foci which were high-pressure frozen and freeze substituted. For comparison, cultures were also treated with conventional processing and wet sectioning. The results show that only the use of pseudo nonaqueous processing was able to detect extracellular sites of early calcium and phosphorus enrichment at 76 h, several hours prior to detection of mineral crystals within biomineralization foci.
Resumo:
A transmission electron microscope (TEM) accessory, the energy filter, enables the establishment of a method for elemental microanalysis, the electron energy-loss spectroscopy (EELS). In conventional TEM, unscattered, elastic, and inelastic scattered electrons contribute to image information. Energy-filtering TEM (EFTEM) allows elemental analysis at the ultrastructural level by using selected inelastic scattered electrons. EELS is an excellent method for elemental microanalysis and nanoanalysis with good sensitivity and accuracy. However, it is a complex method whose potential is seldom completely exploited, especially for biological specimens. In addition to spectral analysis, parallel-EELS, we present two different imaging techniques in this chapter, namely electron spectroscopic imaging (ESI) and image-EELS. We aim to introduce these techniques in this chapter with the elemental microanalysis of titanium. Ultrafine, 22-nm titanium dioxide particles are used in an inhalation study in rats to investigate the distribution of nanoparticles in lung tissue.