9 resultados para Electroreception


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive electroreception is a complex and specialised sense found in a large range of aquatic vertebrates primarily designed for the detection of weak bioelectric fields. Particular attention has traditionally focused on cartilaginous fishes, but a range of teleost and non-teleost fishes from a diversity of habitats have also been examined. As more species are investigated, it has become apparent that the role of electroreception in fishes is not restricted to locating prey, but is utilised in other complex behaviours. This paper presents the various functional roles of passive electroreception in non-electric fishes, by reviewing much of the recent research on the detection of prey in the context of differences in species' habitat (shallow water, deep-sea, freshwater and saltwater). A special case study on the distribution and neural groupings of ampullary organs in the omnihaline bull shark, Carcharhinus leucas, is also presented and reveals that prey-capture, rather than navigation, may be an important determinant of pore distribution. The discrimination between potential predators and conspecifics and the role of bioelectric stimuli in social behaviour is discussed, as is the ability to migrate over short or long distances in order to locate environmentally favourable conditions. The various theories proposed regarding the importance and mediation of geomagnetic orientation by either an electroreceptive and/or a magnetite-based sensory system receives particular attention. The importance of electroreception to many species is emphasised by highlighting what still remains to be investigated, especially with respect to the physical, biochemical and neural properties of the ampullary organs and the signals that give rise to the large range of observed behaviours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weakly electric fish produce a dual function electric signal that makes them ideal models for the study of sensory computation and signal evolution. This signal, the electric organ discharge (EOD), is used for communication and navigation. In some families of gymnotiform electric fish, the EOD is a dynamic signal that increases in amplitude during social interactions. Amplitude increase could facilitate communication by increasing the likelihood of being sensed by others or by impressing prospective mates or rivals. Conversely, by increasing its signal amplitude a fish might increase its sensitivity to objects by lowering its electrolocation detection threshold. To determine how EOD modulations elicited in the social context affect electrolocation, I developed an automated and fast method for measuring electroreception thresholds using a classical conditioning paradigm. This method employs a moving shelter tube, which these fish occupy at rest during the day, paired with an electrical stimulus. A custom built and programmed robotic system presents the electrical stimulus to the fish, slides the shelter tube requiring them to follow, and records video of their movements. I trained the electric fish of the genus Sternopygus was trained to respond to a resistive stimulus on this apparatus in 2 days. The motion detection algorithm correctly identifies the responses 91% of the time, with a false positive rate of only 4%. This system allows for a large number of trials, decreasing the amount of time needed to determine behavioral electroreception thresholds. This novel method enables the evaluation the evolutionary interplay between two conflicting sensory forces, social communication and navigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution and density of the ampullary electroreceptors in the skin of elasmobranchs are influenced by the phylogeny and ecology of a species. Sensory maps were created for 4 species of pristid sawfish. Their ampullary pores were separated into pore fields based on their innervation and cluster formation. Ventrally, ampullary pores are located in 6 areas (5 in Pristis microdon), covering the rostrum and head to the gills. Dorsally, pores are located in 4 areas (3 in P. microdon), which cover the rostrum, head and may extend slightly onto the pectoral fins. In all species, the highest number of pores is found on the dorsal and ventral sides of the rostrum. The high densities of pores along the rostrum combined with the low densities around the mouth could indicate that sawfish use their rostrum to stun their prey before ingesting it, but this hypothesis remains to be tested. The directions of ampullary canals on the ventral side of the rostrum are species specific. P. microdon possesses the highest number of ampullary pores, which indicates that amongst the study species this species is an electroreception specialist. As such, juvenile P. microdon inhabit low-visibility freshwater habitats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroreception is an ancient sense found in many aquatic animals, including sharks, which may be used in the detection of prey, predators and mates. Wobbegong sharks (Orectolobidae) and angel sharks (Squatinidae) represent two distantly related families that have independently evolved a similar dorso-ventrally compressed body form to complement their benthic ambush feeding strategy. Consequently, these groups represent useful models in which to investigate the specific morphological and physiological adaptations that are driven by the adoption of a benthic lifestyle. In this study, we compared the distribution and abundance of electrosensory pores in the spotted wobbegong shark (Orectolobus maculatus) with the Australian angel shark (Squatina australis) to determine whether both species display a similar pattern of clustering of sub-dermal electroreceptors and to further understand the functional importance of electroreception in the feeding behaviour of these benthic sharks. Orectolobus maculatus has a more complex electrosensory system than S. australis, with a higher abundance of pores and an additional cluster of electroreceptors positioned in the snout (the superficial ophthalmic cluster). Interestingly, both species possess a cluster of pores (the hyoid cluster, positioned slightly posterior to the first gill slit) more commonly found in rays, but which may be present in all benthic elasmobranchs to assist in the detection of approaching predators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freshwater fish of the genus Apteronotus (family Gymnotidae) generate a weak, high frequency electric field (< 100 mV/cm, 0.5-10 kHz) which permeates their local environment. These nocturnal fish are acutely sensitive to perturbations in their electric field caused by other electric fish, and nearby objects whose impedance is different from the surrounding water. This thesis presents high temporal and spatial resolution maps of the electric potential and field on and near Apteronotus. The fish's electric field is a complicated and highly stable function of space and time. Its characteristics, such as spectral composition, timing, and rate of attenuation, are examined in terms of physical constraints, and their possible functional roles in electroreception.

Temporal jitter of the periodic field is less than 1 µsec. However, electrocyte activity is not globally synchronous along the fish 's electric organ. The propagation of electrocyte activation down the fish's body produces a rotation of the electric field vector in the caudal part of the fish. This may assist the fish in identifying nonsymmetrical objects, and could also confuse electrosensory predators that try to locate Apteronotus by following its fieldlines. The propagation also results in a complex spatiotemporal pattern of the EOD potential near the fish. Visualizing the potential on the same and different fish over timescales of several months suggests that it is stable and could serve as a unique signature for individual fish.

Measurements of the electric field were used to calculate the effects of simple objects on the fish's electric field. The shape of the perturbation or "electric image" on the fish's skin is relatively independent of a simple object's size, conductivity, and rostrocaudal location, and therefore could unambiguously determine object distance. The range of electrolocation may depend on both the size of objects and their rostrocaudal location. Only objects with very large dielectric constants cause appreciable phase shifts, and these are strongly dependent on the water conductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cephalopods, and in particular the cuttlefish Sepia officinalis, are common models for studies of camouflage and predator avoidance behaviour. Preventing detection by predators is especially important to this group of animals, most of which are soft-bodied, lack physical defences, and are subject to both visually and non-visually mediated detection. Here, we report a novel cryptic mechanism in S. officinalis in which bioelectric cues are reduced via a behavioural freeze response to a predator stimulus. The reduction of bioelectric fields created by the freeze-simulating stimulus resulted in a possible decrease in shark predation risk by reducing detectability. The freeze response may also facilitate other non-visual cryptic mechanisms to lower predation risk from a wide range of predator types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methylmercury (MeHg) is present in the environment because of natural and anthropogenic causes. MeHg can reach the central nervous system (CNS) and cause neurological damage in humans and animals. Electric organ discharges (EODs) in the weak electric fish Gymnotus sylvius are produced by the electric organ and modulated by the CNS. These discharges are used for electrolocation and communication. The purpose of the present study was to investigate the effects of dietary MeHg exposure on EOD rate in G. sylvius. An oscilloscope was used to record the EOD rate. Two treatments were investigated: chronic MeHg administration (4 μg/kg MeHg every 2 days, with a total of nine dietary exposures to MeHg) and acute MeHg administration (a single dose of 20 μg/kg MeHg). The control data for both treatments were collected every 2 days for 18 days, with a total of nine sessions (day 1 until day 18). Data of fish exposed to MeHg were collected every 2 days, totaling nine sessions (day 19 until day 36). Chronic treatment significantly increased the EOD rate in G. sylvius (p<.05), especially with the final treatment (day 32 until day 36). Acute treatment resulted in an initial increase in the EOD rate, which was maintained midway through the experiment (day 26 until day 30 p<.05). The present study provides the first insights into the effects of MeHg on EODs in weak electric fish. The EOD rate is a novel response of the fish to MeHg administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since publication of the first edition, huge developments have taken place in sensory biology research and new insights have been provided in particular by molecular biology. These show the similarities in the molecular architecture and in the physiology of sensory cells across species and across sensory modality and often indicate a common ancestry dating back over half a billion years. Biology of Sensory Systems has thus been completely revised and takes a molecular, evolutionary and comparative approach, providing an overview of sensory systems in vertebrates, invertebrates and prokaryotes, with a strong focus on human senses. Written by a renowned author with extensive teaching experience, the book covers, in six parts, the general features of sensory systems, the mechanosenses, the chemosenses, the senses which detect electromagnetic radiation, other sensory systems including pain, thermosensitivity and some of the minority senses and, finally, provides an outline and discussion of philosophical implications. New in this edition: - Greater emphasis on molecular biology and intracellular mechanisms - New chapter on genomics and sensory systems - Sections on TRP channels, synaptic transmission, evolution of nervous systems, arachnid mechanosensitive sensilla and photoreceptors, electroreception in the Monotremata, language and the FOXP2 gene, mirror neurons and the molecular biology of pain - Updated passages on human olfaction and gustation. Over four hundred illustrations, boxes containing supplementary material and self-assessment questions and a full bibliography at the end of each part make Biology of Sensory Systems essential reading for undergraduate students of biology, zoology, animal physiology, neuroscience, anatomy and physiological psychology. The book is also suitable for postgraduate students in more specialised courses such as vision sciences, optometry, neurophysiology, neuropathology, developmental biology.