79 resultados para Electropolymerization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical alternating current (ac) method designed for the synthesis of polypyrrole (PPy) nano-tubule arrays is the topic of this paper. Two-step anodic aluminum oxide (AAO) membrane is used as a template. The morphology of PPy nano-tubules is observed by SEM and discussed. FTIR spectra exhibit that the peaks of PPy nano-tubules shift compared to conventional PPy film. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline/multi-walled carbon nanotube/gold (PANI/MWNT/Au) composite film was synthesized via a two-step electrochemical process. First the mixture of aniline and MWNT was heated at refluxing and was electropolymerized. Then, the An nanoparticles were dispersed into the film of PANI/MWNT by electrochemical reduction of HAuCl4. The morphology of sample was analyzed by scanning electron microscopy (SEM). Raman measurement indicates a well electrochemical deposition of PANI on MWNT, and XPS result confirms the formation of Au-0 nanoparticles. Further, cyclic voltammograms show that the film exhibits a good electrochemical activity and electrocatalysis towards ascorbic acid. Based on these investigations, a formation mechanism of the PANI/MWNT composite film was proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrooxidation polymerization of azure B on screen-printed carbon electrodes in neutral phosphate buffer was studied. The poly(azure B) modified electrodes exhibited excellent electrocatalysis and stability for dihydronicotinamide adenine dinucleotide (NADH) oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 400 mV lower than that at the bare electrodes. Different techniques, including cyclic voltammetry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy have been employed to characterize the poly (azure B) film. Furthermore, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5 muM to 100 muM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomolecule template gives new opportunities for the fabrication of novel materials with special features. Here we report a route to the formation of DNA-polyaniline (PAn) complex, using immobilized DNA as a template. A gold electrode was first modified with monolayer of 2-aminoethanethiol by self-assembly. Thereafter, by simply immersing the gold electrode into DNA solution, DNA molecules can be attached onto the gold surface, followed by the DNA-templated assembly and electropolymerization of protonated aniline. The electrostatic interactions between DNA and aniline can keep the aniline monomers aligning along the DNA strands. Investigations by surface plasmon resonance (SPR), electrochemistry and reflection absorption UV/Vis-Near IR spectroscopy substantially convince that PAn can be electrochemically grown around DNA template on gold surface. This work may be provides fundamental aspects for building PAn nanowires with DNA as template on solid surface if DNA molecules can be individually separated and stretched.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of electrochemistry with surface plasmon resonance (SPR) has been used to characterize the growth of polyaniline (PAn) on a gold electrode surface during potential cycling. Potential-modulated SPR characteristics of the PAn film were also revealed. The potential switch between the oxidized and reduced states of PAn can lead to a large change of SPR response due to the variation in the imaginary part of the dielectric constant of PAn film resulting from the transition of the film in conductivity. The redox transition of the PAn film during potential cycling is very profitable to the SPR measurements. Two modes of SPR measurement, SPR angular scan (R-theta) and the time evolution of the reflectivity change at a fixed angle (R-t), were displayed to study the growth process of the PAn film. The angle shift of the resonance minimum recorded at each cathodic limit of cyclic potential scanning allows for the unambiguous measurement of the film growth. During cyclic potential scanning, the R-t curve was repeatedly modulated with the direction of the potential ramp as a result of the redox switch of the PAn film, and the amplitude of potential-modulated reflectivity change was well correlated with the cyclic number. The time differential of the R-t curve permits continuous monitoring of the film growth process. These results illustrate that the combined technique is suitable for studying the electropolymerization process of a conducting polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a cyclic voltammetry study of the polyaniline/polyluminol copolymer on platinum electrodes. The results show that under determined conditions it is possible to obtain the copolymer deposited on a metallic surface. The luminol presence clearly affects the oxidation of aniline in the nucleation process and, additionally, changes the cyclic voltammetric characteristics of the obtained material. In this aspect, the copolymer presents hybrid characteristics when compared to the polyaniline and polyluminol separately obtained and seems to present intermediary conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The divergent syntheses of 2-(selenophen-2-yl)pyrroles and their N-vinyl derivatives from available 2-acylselenophenes and acetylenes in a one-pot procedure make these exotic heterocyclic ensembles accessible. Now we face a potentially vast area for exploration with a great diversity of far-reaching consequences including conducting electrochromic polymers with repeating of pyrrole and selenophene units (emerging rivalry for polypyrroles and polyselenophenes), the synthesis of functionalized pyrrole–selenophene assembles for advanced materials, biochemistry and medicine, exciting models for theory of polymer conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The [Mn(4)(IV)O(5)(terpy)(4)(H(2)O)(2)](6+) complex shows great potential for electrode modification by electropolymerization using cyclic voltammetry. The electropolymerization mechanism was based on the electron transfer between dx(2)-y(2) orbitals of the metallic center and p pi orbital of the ligand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the synthesis of the complex [Fe(L)(2)](PF6)(2) (.) H2O (L = 2,6-bis[1-(3-pyrrol-1-yl-propylimino)ethyl]pyridine (Fig. 1) and its characterization through elemental and thermal analysis, X-ray diffraction and UV-Vis, IR and H-1 NMR spectra. The use of this compound in the preparation of modified electrodes is also described. The best electrochemical parameters to achieve optimum film formation have been established and the effects of both the upper-limit of the applied scanning potential (E-aul) and the number of scans on the efficiency of film formation have been investigated. Film surface morphology has been characterized by atomic force microscopy. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The [Mn4 IVO5(terpy)4(H 2O)2]6+ complex, show great potential for electrode modification by electropolymerization using cyclic voltammetry. The electropolymerization mechanism was based on the electronic transfer between dx2-y2 orbitals of the center metallic and pπ orbital of the ligand, which show great complexity of the system due to orbitals overlap present in octahedral complex of the metal-μ-oxo. The voltammetric behavior both in and after electropolymerization process were also discussed, where the best condition of electropolymerization was observed for low scan rate and 50 potential cycles. A study in ITO/glass electrode for better characterization of polymer was also performed. ©The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)