991 resultados para Electrophysiological Responses
Resumo:
Isolating processes within the brain that are specific to human behavior is a key goal for social neuroscience. The current research was an attempt to test whether recent findings of enhanced negative ERPs in response to unexpected human gaze are unique to eye gaze stimuli by comparing the effects of gaze cues with the effects of an arrow cue. ERPs were recorded while participants (N¼30) observed a virtual actor or an arrow that gazed (or pointed) either toward (object congruent) or away from (object incongruent) a flashing checkerboard. An enhanced negative ERP (N300) in response to object incongruent compared to object congruent trials was recorded for both eye gaze and arrow stimuli. The findings are interpreted as reflecting a domain general mechanism for detecting unexpected events.
Resumo:
The leaf-cutting ant Atta sexdens rubropilosa Forel, 1908 is the most harmful of the Eucalyptus pests, causing severe losses in wood production through defoliation. Various strategies have been tried and effort spent on the development of methods to control this pest, however no practical and environmentally acceptable one currently exists. In this work the chemical composition of the essential oil of seven Eucalyptus species was identified and the selectivity and sensitivity of antennal receptors of A. sexdens rubropilosa workers to the volatile compounds were determined using the electroantennographic technique (EAG and GC-EAD). Analysis by GC-EAD showed in E. cloesiana and E. maculata, respectively, seventeen and sixteen terpenes that elicited responses in ant workers' antennae, indicating the potential role of the essential oils as allelochemicals that determine the choice of the foraging material. © 2006 Verlag der Zeitschrift für Naturforschung.
Resumo:
Electrophysiological responses based on electroantennographic detection (GC-EAD) and electroantennography (EAG) analysis of Naupactus bipes beetles (Germar, 1824) (Coleoptera: Curculionidae: Brachycerinae) were used to test volatile oils of Piper gaudichaudianum, P. regnellii and P. hispidum. In the EAG experiments, female and male beetles showed significant EAG response to the three volatile oils of Piper species, with the females' responses slightly higher than the males'. The experiments with GC-EAD revealed that some terpenoids (namely, alpha-pinene, beta-pinene, myrcene, alpha-copaene and germacrene) present in the leaf essential oils of the Piper species are perceptible to female and male beetles.
Resumo:
A large variety of social signals, such as facial expression and body language, are conveyed in everyday interactions and an accurate perception and interpretation of these social cues is necessary in order for reciprocal social interactions to take place successfully and efficiently. The present study was conducted to determine whether impairments in social functioning that are commonly observed following a closed head injury, could at least be partially attributable to disruption in the ability to appreciate social cues. More specifically, an attempt was made to determine whether face processing deficits following a closed head injury (CHI) coincide with changes in electrophysiological responsivity to the presentation of facial stimuli. A number of event-related potentials (ERPs) that have been linked specifically to various aspects of visual processing were examined. These included the N170, an index of structural encoding ability, the N400, an index of the ability to detect differences in serially presented stimuli, and the Late Positivity (LP), an index of the sensitivity to affective content in visually-presented stimuli. Electrophysiological responses were recorded while participants with and without a closed head injury were presented with pairs of faces delivered in a rapid sequence and asked to compare them on the basis of whether they matched with respect to identity or emotion. Other behavioural measures of identity and emotion recognition were also employed, along with a small battery of standard neuropsychological tests used to determine general levels of cognitive impairment. Participants in the CHI group were impaired in a number of cognitive domains that are commonly affected following a brain injury. These impairments included reduced efficiency in various aspects of encoding verbal information into memory, general slower rate of information processing, decreased sensitivity to smell, and greater difficulty in the regulation of emotion and a limited awareness of this impairment. Impairments in face and emotion processing were clearly evident in the CHI group. However, despite these impairments in face processing, there were no significant differences between groups in the electrophysiological components examined. The only exception was a trend indicating delayed N170 peak latencies in the CHI group (p = .09), which may reflect inefficient structural encoding processes. In addition, group differences were noted in the region of the N100, thought to reflect very early selective attention. It is possible, then, that facial expression and identity processing deficits following CHI are secondary to (or exacerbated by) an underlying disruption of very early attentional processes. Alternately the difficulty may arise in the later cognitive stages involved in the interpretation of the relevant visual information. However, the present data do not allow these alternatives to be distinguished. Nonetheless, it was clearly evident that individuals with CHI are more likely than controls to make face processing errors, particularly for the more difficult to discriminate negative emotions. Those working with individuals who have sustained a head injury should be alerted to this potential source of social monitoring difficulties which is often observed as part of the sequelae following a CHI.
Resumo:
Recent studies indicated that hyperactivity of the hypothalamo-pituitary-adrenal system is a considerable risk factor for the precipitation of affective disorders, most notably of major depression. The mechanism by which this hyperactivity eventually leads to clinical symptoms of depression is unknown. In the present animal study, we tested one possible mechanism, i.e., that long-term exposure to high corticosterone levels alters functional responses to serotonin in the hippocampus, an important area in the etiology of depression. Rats were injected daily for 3 weeks with a high dose of corticosterone; electrophysiological responses to serotonin were recorded intracellularly from CA1 pyramidal neurons in vitro. We observed that daily injections with corticosterone gradually attenuate the membrane hyperpolarization and resistance decrease mediated by serotonin-1A receptors. We next used single-cell antisense RNA amplification from identified CA1 pyramidal neurons to resolve whether the functional deficits in serotonin responsiveness are accompanied by decreased expression levels of the serotonin-1A receptor. It appeared that expression of serotonin-1A receptors in CA1 pyramidal cells is not altered; this result was supported by in situ hybridization. Expression of corticosteroid receptors in the same cells, particularly of the high-affinity mineralocorticoid receptor, was significantly reduced after long-term corticosterone treatment. The present findings indicate that prolonged elevation of the corticosteroid concentration, a possible causal factor for major depression in humans, gradually attenuates responsiveness to serotonin without necessarily decreasing serotonin-1A receptor mRNA levels in pyramidal neurons. These functional changes may occur by a posttranscriptional mechanism or by transcriptional regulation of genes other than the serotonin-1A receptor gene itself.
Resumo:
Earlier work showed that playbacks of conspecific song induce expression of the immediate early gene ZENK in the caudo-medial neostriatum (NCM) of awake male zebra finches and that this response disappears with repeated presentations of the same stimulus. In the present study, we investigated whether repetitions of a song stimulus also elicited a decrement in the electrophysiological responses in the NCM neurons of these birds. Multiunit auditory responses in NCM were initially vigorous, but their amplitude decreased (habituated) rapidly to repeated stimulation, declining to about 40% of the initial response during the first 50 iterations. A similar time course of change was seen at the single unit level. This habituation occurred specifically for each song presented but did not occur when pure tones were used as a stimulus. Habituation to conspecific, but not heterospecific, song was retained for 20 h or longer. Injections of inhibitors of protein or RNA synthesis at the recording site did not affect the initial habituation to a novel stimulus, but these drugs blocked the long-term habituation when injected at 0.5-3 h and at 5.5-7 h after the first exposure to the stimulus. Thus, at least two waves of gene induction appear to be necessary for long-lasting habituation to a particular song.
Resumo:
Separate physiological mechanisms which respond to spatial and temporal stimulation have been identified in the visual system. Some pathological conditions may selectively affect these mechanisms, offering a unique opportunity to investigate how psychophysical and electrophysiological tests reflect these visual processes, and thus enhance the use of the tests in clinical diagnosis. Amblyopia and optical blur were studied, representing spatial visual defects of neural and optical origin, respectively. Selective defects of the visual pathways were also studied - optic neuritis which affects the optic nerve, and dementia of the Alzheimer type in which the higher association areas are believed to be affected, but the primary projections spared. Seventy control subjects from 10 to 79 years of age were investigated. This provided material for an additional study of the effect of age on the psychophysical and electrophysiological responses. Spatial processing was measured by visual acuity, the contrast sensitivity function, or spatial modulation transfer function (MTF), and the pattern reversal and pattern onset-offset visual evoked potential (VEP). Temporal, or luminance, processing was measured by the de Lange curve, or temporal MTF, and the flash VEP. The pattern VEP was shown to reflect the integrity of the optic nerve, geniculo striate pathway and primary projections, and was related to high temporal frequency processing. The individual components of the flash VEP differed in their characteristics. The results suggested that the P2 component reflects the function of the higher association areas and is related to low temporal frequency processing, while the Pl component reflects the primary projection areas. The combination of a delayed flash P2 component and a normal latency pattern VEP appears to be specific to dementia of the Alzheimer type and represents an important diagnostic test for this condition.
Resumo:
In an endeavour to provide further insight into the maturation of the human visual system, the contiguous development of the pattern reversal VEP, flash VEP and flash ERG was studied in a group of neurologically normal pre-term infants, born between 28 and 35 weeks gestation. Maturational changes were observed in all the evoked electrophysiological responses recorded, these were mainly characterised by an increase in the complexity of the waveform and a shortening in the latency of the response. Initially the ERG was seen to consist of a broad b-wave only, with the a-wave emerging at an average age of 40 weeks PMA. The a-wave showed only a slight reduction in latency and a modest increase in amplitude as the infant grows older, whereas the changes seen in the ERG b-wave were much more dramatic. Pattern reversal VEPs were successfully recorded for the first time during the pre-term period. Flash VEPs were also recorded for comparison. The neonatal pattern reversal VEP consistently showed a major positive component (P1) of long latency. As the infant grew older, the latency of the P1 component decreased and was found to be negatively correlated with PMA at recording. The appearance of the N1 and N2 components became more frequent as the infant matured. The majority of infants were found to be myopic at birth and refractive error was correlated with PMA, with emmetropisation occurring at about 45 weeks PMA. The pattern reversal VEP in response to 2o checks was apparently unaffected by refractive error.
Resumo:
The neural basis of visual perception can be understood only when the sequence of cortical activity underlying successful recognition is known. The early steps in this processing chain, from retina to the primary visual cortex, are highly local, and the perception of more complex shapes requires integration of the local information. In Study I of this thesis, the progression from local to global visual analysis was assessed by recording cortical magnetoencephalographic (MEG) responses to arrays of elements that either did or did not form global contours. The results demonstrated two spatially and temporally distinct stages of processing: The first, emerging 70 ms after stimulus onset around the calcarine sulcus, was sensitive to local features only, whereas the second, starting at 130 ms across the occipital and posterior parietal cortices, reflected the global configuration. To explore the links between cortical activity and visual recognition, Studies II III presented subjects with recognition tasks of varying levels of difficulty. The occipito-temporal responses from 150 ms onwards were closely linked to recognition performance, in contrast to the 100-ms mid-occipital responses. The averaged responses increased gradually as a function of recognition performance, and further analysis (Study III) showed the single response strengths to be graded as well. Study IV addressed the attention dependence of the different processing stages: Occipito-temporal responses peaking around 150 ms depended on the content of the visual field (faces vs. houses), whereas the later and more sustained activity was strongly modulated by the observers attention. Hemodynamic responses paralleled the pattern of the more sustained electrophysiological responses. Study V assessed the temporal processing capacity of the human object recognition system. Above sufficient luminance, contrast and size of the object, the processing speed was not limited by such low-level factors. Taken together, these studies demonstrate several distinct stages in the cortical activation sequence underlying the object recognition chain, reflecting the level of feature integration, difficulty of recognition, and direction of attention.
Resumo:
The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95 of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects.
Resumo:
D’importantes faiblesses dans l'expérience, l'expression et la reconnaissance des émotions chez les patients souffrant de schizophrénie ont été relativement bien documentées au fil des années. Par ailleurs, les différences sexuelles dans le comportement et l'activité cérébrale associée aux processus émotionnels ont été rapportées dans la population générale. Il apparaît donc surprenant que si peu ait été publié afin d’améliorer notre compréhension des différences sexuelles dans la schizophrénie. La présente étude vise à comparer les différences dans le mode de fonctionnement d’hommes et de femmes atteints de schizophrénie. Il s’agit, avec cette population, de comprendre la réponse comportementale et électrocorticale associés au traitement des images émotionnelles. Ces données ont été enregistrées à l’aide des potentiels évoqués cognitifs (PÉC), et des temps de réponses lors du visionnement passif d’images émotionnelles. L’activation des composantes P200, N200 antérieure et P300 a été comparée chez 18 patients avec une schizophrénie stabilisée (9 femmes et 9 hommes) et 24 participants formant un groupe contrôle (13 femmes et 11 hommes) sans problème psychiatrique. L’analyse des PÉC a globalement révélé que la valence et l’activation émotionnelle influencent les composantes précoces de même que les composantes tardives de façon indépendante, ce qui prouve l’importance d’investiguer ces deux dimensions émotionnelles sur plusieurs composantes. Une découverte d’intérêt réside dans l’observation de différences sexuelles qui entrent en interaction avec le groupe, à différentes latences et attribuées tant à la valence qu’à l’activation. De plus, les données provenant des hormones gonadiques montrent que la progestérone pourrait avoir un impact fonctionnel sur les processus de traitement des émotions tant chez les femmes que chez les hommes. Cependant, d’autres études sont nécessaires pour pouvoir comprendre davantage le rôle des hormones gonadiques en neuropsychopathologie.
Resumo:
Le traitement de l’épilepsie chez le jeune enfant représente un enjeu majeur pour le développement de ce dernier. Chez la grande majorité des enfants atteints de spasmes infantiles et chez plusieurs atteints de crises partielles complexes réfractaires, le vigabatrin (VGB) représente un traitement incontournable. Cette médication, ayant démontré un haut taux d’efficacité chez cette population, semble toutefois mener à une atteinte du champ visuel périphérique souvent asymptomatique. L’évaluation clinique des champs visuels avec la périmétrie chez les patients de moins de neuf ans d’âge développemental est toutefois très difficile, voire impossible. Les études électrophysiologiques classiques menées auprès de la population épileptique pédiatrique suggèrent l’atteinte des structures liées aux cônes de la rétine. Les protocoles standards ne sont toutefois pas spécifiques aux champs visuels et les déficits soulignés ne concordent pas avec l’atteinte périphérique observée. Cette thèse vise donc à élaborer une tâche adaptée à l’évaluation des champs visuels chez les enfants en utilisant un protocole objectif, rapide et spécifique aux champs visuels à partir des potentiels évoqués visuels (PEVs) et à évaluer, à l’aide de cette méthode, les effets neurotoxiques à long terme du VGB chez des enfants épileptiques exposés en bas âge. La validation de la méthode est présentée dans le premier article. La stimulation est constituée de deux cercles concentriques faits de damiers à renversement de phase alternant à différentes fréquences temporelles. La passation de la tâche chez l’adulte permet de constater qu’une seule électrode corticale (Oz) est nécessaire à l’enregistrement simultané des réponses du champ visuel central et périphérique et qu’il est possible de recueillir les réponses électrophysiologiques très rapidement grâces l’utilisation de l’état-stationnaire (steady-state). La comparaison des données d’enfants et d’adultes normaux permet de constater que les réponses recueillies au sein des deux régions visuelles ne dépendent ni de l’âge ni du sexe. Les réponses centrales sont aussi corrélées à l’acuité visuelle. De plus, la validité de cette méthode est corroborée auprès d’adolescents ayant reçu un diagnostic clinique d’un déficit visuel central ou périphérique. En somme, la méthode validée permet d’évaluer adéquatement les champs visuels corticaux central et périphérique simultanément et rapidement, tant chez les adultes que chez les enfants. Le second article de cette thèse porte sur l’évaluation des champs visuels, grâce à la méthode préalablement validée, d’enfants épileptiques exposés au VGB en jeune âge en comparaison avec des enfants épileptiques exposés à d’autres antiépileptiques et à des enfants neurologiquement sains. La méthode a été bonifiée grâce à la variation du contraste et à l’enregistrement simultané de la réponse rétinienne. On trouve que la réponse corticale centrale est diminuée à haut et à moyen contrastes chez les enfants exposés au VGB et à haut contraste chez les enfants exposés à d’autres antiépileptiques. Le gain de contraste est altéré au sein des deux groupes d’enfants épileptiques. Par contre, l’absence de différences entre les deux groupes neurologiquement atteints ne permet pas de faire la distinction entre l’effet de la médication et celui de la maladie. De plus, la réponse rétinienne périphérique est atteinte chez les enfants épileptiques exposés au Sabril® en comparaison avec les enfants neurologiquement sains. La réponse rétinienne périphérique semble liée à la durée d’exposition à la médication. Ces résultats corroborent ceux rapportés dans la littérature. En somme, les résultats de cette thèse offrent une méthode complémentaire, rapide, fiable, objective à celles connues pour l’évaluation des champs visuels chez les enfants. Ils apportent aussi un éclairage nouveau sur les impacts à long terme possibles chez les enfants exposés au VGB dans la petite enfance.
Resumo:
We investigated the effect of morphological differences on neuronal firing behavior within the hippocampal CA3 pyramidal cell family by using three-dimensional reconstructions of dendritic morphology in computational simulations of electrophysiology. In this paper, we report for the first time that differences in dendritic structure within the same morphological class can have a dramatic influence on the firing rate and firing mode (spiking versus bursting and type of bursting). Our method consisted of converting morphological measurements from three-dimensional neuroanatomical data of CA3 pyramidal cells into a computational simulator format. In the simulation, active channels were distributed evenly across the cells so that the electrophysiological differences observed in the neurons would only be due to morphological differences. We found that differences in the size of the dendritic tree of CA3 pyramidal cells had a significant qualitative and quantitative effect on the electrophysiological response. Cells with larger dendritic trees: (1) had a lower burst rate, but a higher spike rate within a burst, (2) had higher thresholds for transitions from quiescent to bursting and from bursting to regular spiking and (3) tended to burst with a plateau. Dendritic tree size alone did not account for all the differences in electrophysiological responses. Differences in apical branching, such as the distribution of branch points and terminations per branch order, appear to effect the duration of a burst. These results highlight the importance of considering the contribution of morphology in electrophysiological and simulation studies.
Resumo:
A tireoide sintetiza a tiroxina (T4) e a 3,5,3’-triiodotironina (T3), ambos hormônios apresentam uma função crucial no desenvolvimento do sistema nervoso central, incluindo o sistema visual e a retina. A diminuição dos níveis sanguíneos do T3 e T4 ocasionam uma síndrome denominada de hipotireoidismo, o que pode levar à prejuízos visuais. Os déficits visuais gerados pelo hipotireoidismo estão diretamente relacionados ao período de desenvolvimento do indivíduo. Foi demonstrado em modelos murinos que o hipotireoidismo congênito diminui a espessura da retina, o número de células, e interfere na diferenciação da subpopulação de cones M. Desta forma buscaremos investigar possíveis alterações funcionais na retina de ratos wistar jovens após a tireoidectomia bilateral, utilizando respostas eletrofisiológicas não invasivas. Para tanto, dividimos os ratos em três grupos (controle, sham e tireoidectomizado) cada um contendo ≥ 8 animais. As cirurgias foram realizadas 30 dias pós-natal. Os eletrorretinogramas de campo total foram realizados 10, 15, 20, 25 e 30 dias após a cirurgia, utilizando protocolos para avaliar a resposta escotópica máxima, resposta fotópica (com e sem o uso de filtros de luz) e a resposta ao flicker (12, 15, 18 e 30 Hz). Os parâmetros analisados foram o tempo implícito e a amplitude das ondas a e b. Além disso, realizamos o monitoramento dos parâmetros clínicos dos animais, visando identificar características que indiquem um quadro de hipotireoidismo, bem como a dosagem dos hormônios tireoidianos. Os resultados obtidos demonstraram que em todos dos protocolos de estimulação utilizados no ERG houve diminuição nas amplitudes das ondas a e b nos animais tireoidectomizados em todos os dias avaliados após a cirurgia, quando comparados com animais do grupo controle e sham. Os resultados da avaliação do tempo implícito para ambas as ondas não demonstraram diferença estatística quando comparamos os diversos grupos ao controle. Também podemos constatar uma redução do ganho de peso e tamanho nos animais que sofreram tireoidectomia, associados à redução dos níveis de hormônio tireoidiano (T3). Concluímos dessa forma que os hormônios tireoidianos estão diretamente ligados a alterações funcionais na retina dos animais que sofreram tireoidectomia, bem com, na redução da aquisição de peso e aumento de tamanho.
Resumo:
The electrophysiological properties of acute and chronic methylphenidate (MPD) on neurons of the prefrontal cortex (PFC) and caudate nucleus (CN) have not been studied in awake, freely behaving animals. The present study was designed to investigate the dose-response effects of MPD on sensory evoked potentials recorded from the PFC and CN in freely behaving rats previously implanted with permanent electrodes, as well as their behavioral (locomotor) activities. On experimental day 1, locomotor behavior of rats was recorded for 2 h post-saline injection, and sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10 mg/kg, i.p., MPD administration. Animals were injected for the next five days with daily 2.5 mg/kg MPD to elicit behavioral sensitization. Locomotor recording was resumed on experimental days 2 and 6 after the MPD maintenance dose followed by 3 days of washout. On experimental day 10, rats were connected again to the electrophysiological recording system and rechallenged with saline and the identical MPD doses as on experimental day 1. On experimental day 11, rat's locomotor recording was resumed before and after 2.5 mg/kg MPD administration. Behavioral results showed that repeated administration of MPD induced behavioral sensitization. Challenge doses (0.6, 2.5, and 10.0 mg/kg) of MPD on experimental day 1 elicited dose-response attenuation in the response amplitude of the average sensory evoked field potential components recorded from the PFC and CN. Chronic MPD administration resulted in attenuation of the PFC's baseline recorded on experimental day 10, while the same treatment did not modulate the baseline recorded from the CN. Treatment of MPD on experimental day 10 resulted in further decrease of the average sensory evoked response compared to that obtained on experimental day 1. This observation of further decrease in the electrophysiological responses after chronic administration of MPD suggests that the sensory evoked responses on experimental day 10 represent neurophysiological sensitization. Moreover, two different response patterns were obtained from PFC and CN following chronic methylphenidate administration. In PFC, the baseline and effect of methylphenidate expressed electrophysiological sensitization on experimental day 10, while recording from CN did not exhibit any electrophysiological sensitization.