986 resultados para Electrophoretic Mobility Shift Assay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcriptional gene silencing (TCS) is often associated with an increased level of cytosine methylation in the affected promoters. The effect of methylation of the cauliflower mosaic virus (CaMV) 35S promoter sequence on its binding to factors present in the nuclei was analyzed by electrophoretic mobility shift assays using extracts of petunia flowers. Specific DNA-protein interactions were detected in the region of the CaMV 35S promoter that contains the as-1 element and the region between -345 and -208. The binding of protein factor(s) to the as-1 element was influenced by cytosine methylation, whereas the binding to the region between -345 and -208 was unaffected. The results suggest that cytosine methylation of the as-1 element potentially affects the activity of the CaMV 35S promoter. © Georg Thieme Verlag KG Stuttgart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified strong topoisomerase sites (STS) for Mycobacteruim smegmatis topoisomerase I in double-stranded DNA context using electrophoretic mobility shift assay of enzyme-DNA covalent complexes; Mg2+, an essential component for DNA relaxation activity of the enzyme, is not required for binding to DNA, The enzyme makes single-stranded nicks, with transient covalent interaction at the 5'-end of the broken DNA strand, a characteristic akin to prokaryotic topoisomerases. More importantly, the enzyme binds to duplex DNA having a preferred site with high affinity, a. property similar to the eukaryotic type I topoisomerases, The preferred cleavage site is mapped on a 65 bp duplex DNA and found to be CG/TCTT. Thus, the enzyme resembles other prokaryotic type I topoisomerases in mechanistics of the reaction, but is similar to eukaryotic enzymes in DNA recognition properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gemini viral assembly and transport of viral DNA into nucleus for replication, ssentially involve DNA-coat protein interactions. The kinetics of interaction of Cotton LeafCtirl Kokhran Virus-Dabawali recombinant coat protein (rCP) with DNA was studied by electrophoretic mobility shift assay (EMSA) and Surface plasmon resonance (SPR). The rCP interacted with ssDNA with a K-A, of 2.6 +/- 0.29 x 10(8) M-1 in a sequence non-specific manner. The CP has a conserved C2H2 type zinc finger motif composed of residues C68, C72, H81 and H85. Mutation of these residues to alanine resulted in reduced binding to DNA probes. The H85A mutant rCP showed the least binding with approximately 756 fold loss in the association rate and a three order magnitude decrease in the binding affinity as compared to rCP. The CP-DNA interactions via the zinc finger motif could play a Crucial role ill Virus assembly and in nuclear transport. (C) 2009 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: Polyalanine tract variations in transcription factors have been identified for a wide spectrum of developmental disorders. The thyroid transcription factor forkhead factor E1 (FOXE1) contains a polymorphic polyalanine tract with 12-22 alanines. Single-nucleotide polymorphisms (SNP) close to this locus are associated with papillary thyroid cancer (PTC), and a strong linkage disequilibrium block extends across this region. OBJECTIVE: The objective of the study was to assess whether the FOXE1 polyalanine repeat region was associated with PTC and to assess the effect of polyalanine repeat region variants on protein expression, DNA binding, and transcriptional function on FOXE1-responsive promoters. DESIGN: This was a case-control study. SETTING: The study was conducted at a tertiary referral hospital. PATIENTS AND METHODS: The FOXE1 polyalanine repeat region and tag SNP were genotyped in 70 PTC, with a replication in a further 92 PTC, and compared with genotypes in 5767 healthy controls (including 5667 samples from the Wellcome Trust Case Control Consortium). In vitro studies were performed to examine the protein expression, DNA binding, and transcriptional function for FOXE1 variants of different polyalanine tract lengths. RESULTS: All the genotyped SNP were in tight linkage disequilibrium, including the FOXE1 polyalanine repeat region. We confirmed the strong association of rs1867277 with PTC (overall P = 1 × 10(-7), odds ratio 1.84, confidence interval 1.31-2.57). rs1867277 was in tight linkage disequilibrium with the FOXE1 polyalanine repeat region (r(2) = 0.95). FOXE1(16Ala) was associated with PTC with an odds ratio of 2.23 (confidence interval 1.42-3.50; P = 0.0005). Functional studies in vitro showed that FOXE1(16Ala) was transcriptionally impaired compared with FOXE1(14Ala), which was not due to differences in protein expression or DNA binding. CONCLUSIONS: We have confirmed the previous association of FOXE1 with PTC. Our data suggest that the coding polyalanine expansion in FOXE1 may be responsible for the observed association between FOXE1 and PTC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Bryophyllum pinnata (B. pinnata) is a common medicinal plant used in traditional medicine of India and of other countries for curing various infections, bowel diseases, healing wounds and other ailments. However, its anticancer properties are poorly defined. In view of broad spectrum therapeutic potential of B. pinnata we designed a study to examine anti-cancer and anti-Human Papillomavirus (HPV) activities in its leaf extracts and tried to isolate its active principle. Methods: A chloroform extract derived from a bulk of botanically well-characterized pulverized B. pinnata leaves was separated using column chromatography with step-gradient of petroleum ether and ethyl acetate. Fractions were characterized for phyto-chemical compounds by TLC, HPTLC and NMR and Biological activity of the fractions were examined by MTT-based cell viability assay, Electrophoretic Mobility Shift Assay, Northern blotting and assay of apoptosis related proteins by immunoblotting in human cervical cancer cells. Results: Results showed presence of growth inhibitory activity in the crude leaf extracts with IC50 at 552 mu g/ml which resolved to fraction F4 (Petroleum Ether: Ethyl Acetate:: 50: 50) and showed IC50 at 91 mu g/ml. Investigations of anti-viral activity of the extract and its fraction revealed a specific anti-HPV activity on cervical cancer cells as evidenced by downregulation of constitutively active AP1 specific DNA binding activity and suppression of oncogenic c-Fos and c-Jun expression which was accompanied by inhibition of HPV18 transcription. In addition to inhibiting growth, fraction F4 strongly induced apoptosis as evidenced by an increased expression of the pro-apoptotic protein Bax, suppression of the anti-apoptotic molecules Bcl-2, and activation of caspase-3 and cleavage of PARP-1. Phytochemical analysis of fraction F4 by HPTLC and NMR indicated presence of activity that resembled Bryophyllin A. Conclusions: Our study therefore demonstrates presence of anticancer and anti-HPV an activity in B. pinnata leaves that can be further exploited as a potential anticancer, anti-HPV therapeutic for treatment of HPV infection and cervical cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-stranded DNA (ss-DNA) oligomers (dA(20), d(C(3)TA(2))(3)C-3] or dT(20)) are able to disperse single-walled carbon nanotubes (SWNTs) in water at pH 7 through non-covalent wrapping on the nanotube surface. At lower pH, an alteration of the DNA secondary structure leads to precipitation of the SWNTs from the dispersion. The structural change of dA(20) takes place from the single-stranded to the A-motif form at pH 3.5 while in case of d(C(3)TA(2))(3)C-3] the change occurs from the single-stranded to the i-motif form at pH 5. Due to this structural change, the DNA is no longer able to bind the nanotube and hence the SWNT precipitates from its well-dispersed state. However, this could be reversed on restoring the pH to 7, where the DNA again relaxes in the single-stranded form. In this way the dispersion and precipitation process could be repeated over and over again. Variable temperature UV-Vis-NIR and CD spectroscopy studies showed that the DNA-SWNT complexes were thermally stable even at similar to 90 degrees C at pH 7. Broadband NIR laser (1064 nm) irradiation also demonstrated the stability of the DNA-SWNT complex against local heating introduced through excitation of the carbon nanotubes. Electrophoretic mobility shift assay confirmed the formation of a stable DNA-SWNT complex at pH 7 and also the generation of DNA secondary structures (A/i-motif) upon acidification. The interactions of ss-DNA with SWNTs cause debundling of the nanotubes from its assembly. Selective affinity of the semiconducting SWNTs towards DNA than the metallic ones enables separation of the two as evident from spectroscopic as well as electrical conductivity studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of 04 DNA even at a lower concentration of the stabilizing K+ ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic response and antiproliferative activity toward cancer cells selectively when compared to the normal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs with a shallow distance dependence over long distances through the π-stacked DNA bases, leading to the oxidation and dissociation of DNA-bound p53. The extent of p53 dissociation depends upon the redox potential of the response element DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing both synthetic and human p53 response elements with an appended anthraquinone photooxidant. Greater p53 dissociation is observed from DNA sequences containing low redox potential purine regions, particularly guanine triplets, within the p53 response element. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of preferred electron hole localization, were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets within the response element. Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites within the response element, and therefore in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as possible biological implications, have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.

To determine whether the change in p53 response element occupancy observed in vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative PCR (qPCR) were used to directly quantify p53 binding to certain response elements in HCT116N cells. The HCT116N cells containing a wild type p53 were treated with the photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to induce oxidative genomic stress. To covalently tether p53 interacting with DNA, the cells were fixed with disuccinimidyl glutarate and formaldehyde. The nuclei of the harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads conjugated with a monoclonal p53 antibody. The purified immounoprecipiated DNA was then quantified via qPCR and genomic sequencing. Overall, the ChIP results were significantly varied over ten experimental trials, but one trend is observed overall: greater variation of p53 occupancy is observed in response elements from which oxidative dissociation would be expected, while significantly less change in p53 occupancy occurs for response elements from which oxidative dissociation would not be anticipated.

The chemical oxidation of transcription factor p53 via DNA CT was also investigated with respect to the protein at the amino acid level. Transcription factor p53 plays a critical role in the cellular response to stress stimuli, which may be modulated through the redox modulation of conserved cysteine residues within the DNA-binding domain. Residues within p53 that enable oxidative dissociation are herein investigated. Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S mutation significantly decreased the protein affinity (KD) for the Gadd45 response element. EMSA assays of p53 oxidative dissociation promoted by photoexcitation of anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative dissociation while C277S substantially attenuates dissociation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide labeled, while oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 6500 LC-MS/MS system, quantified with Skyline, and directly compared. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in oxidized samples as compared to the respective controls. All of the observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, C275, and C277. Based on these data it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ExoU, uma citotoxina produzida pelo patógeno oportunista Pseudomonas aeruginosa e translocada para o citossol de células hospedeiras via sistema de secreção do tipo III, é associada à gravidade de infecções agudas. Estudos anteriores realizados em nosso laboratório relataram a potente atividade pró-inflamatória de ExoU, responsável por um intenso recrutamento de neutrófilos para o sítio de infecção. No presente trabalho, o efeito de ExoU na modulação da ativação do fator transcricional NF-κB e na regulação da expressão e da secreção da quimiocina para neutrófilos IL-8 foi avaliado em culturas de células epiteliais respiratórias e endoteliais humanas infectadas com a cepa PA103 de P. aeruginosa (produtora de ExoU) ou com a mutante deletada no gene exoU, PA103κexoU. Análises por RT-PCR semi-quantitativo mostraram que a infecção pela cepa produtora de ExoU levou ao aumento dos níveis de mRNA de IL-8, enquanto ensaios de alteração da mobilidade eletroforética (EMSA), supershift e com gene repórter mostraram que ExoU induziu a translocação nuclear do heterodímero transativador p65/p50 de NF-κB e a ativação da transcrição de genes dependente deste fator transcricional. Adicionalmente, o tratamento das culturas celulares com um inibidor de NF-κB antes da infecção bacteriana reduziu significativamente os níveis de mRNA de IL-8 e da secreção desta quimiocina. Em conjunto, estes resultados mostram que ExoU ativa NF-κB e, consequentemente, estimula a expressão e a secreção de IL-8 por células epiteliais respiratórias e células endoteliais infectadas com P. aeruginosa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dentre os diversos tipos de câncer agressivos, o câncer de mama é o mais comum em mulheres. Mutações hereditárias e adquiridas, assim como alterações epigenéticas atuam em sinergia na carcinogênese mamária e na progressão tumoral. A proteína P53 é uma supressora de tumor e possui uma atuação fundamental na integridade genômica. Apesar do vasto conhecimento sobre o controle da P53 a nível de proteína, ainda pouco se sabe sobre o controle transcricional do gene TP53. A série 21T, uma série de 4 linhagens celulares originadas da mama da mesma paciente, representando diferentes estágios de progressão tumoral mamária, é um eficiente modelo para investigação das alterações epigenéticas e suas influências na expressão gênica ao longo da progressão do câncer de mama. Nós analisamos a organização do domínio do gene TP53 através da técnica de arranjo de DNA, em diversas linhagens celulares de câncer de mama e linhagens controle, e realizamos uma tentativa de caracterizar estes elementos de DNA nas linhagens controle não-tumorais HB2 e MCF10A e nas tumorais MCF-7, MDA-MB-231, T47D, através dos marcadores epigenéticos de eucromatina, H4Ac, e heterocromatina, H3K9me3. Ainda analisamos a ligação de proteínas à região associada à matriz nuclear (MAR), denominada MAR 2, e a possível ligação da proteína ligante à matriz nuclear (MARBP), PARP-1, através de ensaios de gel shift (EMSA). Detectamos que na linhagem controle epitelial mamária, HB2, o gene TP53 está posicionado num domínio de DNA relativamente pequeno, aproximadamente 50 kb, delimitado por dois sítios de fixação à matriz nuclear. Interessantemente, esta estrutura de domínio se apresentou radicalmente diferente nas linhagens de câncer de mama estudadas, MCF7, T47D, MDA-MB-231 e BT474, nos quais o tamanho do domínio estudado estava aumentado e a transcrição do TP53 diminuída. Os enriquecimentos com os marcadores epigenéticos de cromatina H4Ac e H3K9me3 estão diferentemente distribuídos nas MARs nas linhagens celulares. Surpreendentemente, a MAR 2 apresentou uma ligação altamente específica, o que poderia representar a atuação de fatores transcricionais envolvidos na organização da cromatina. Através de programas de bioinformática, detectamos putativos sítios para interessantes fatores de transcrição, tais como o c/EBP-beta e c-myb, que poderiam atuar em cis regulando a expressão do gene TP53 e outros flanqueadores. Nós propusemos um modelo para a organização da cromatina na região de domínio do gene TP53 com os genes flanqueadores. Através da série 21T, detectamos uma hipometilação global genômica, nas células cancerosas 21NT e 21MT1. Uma importante diminuição da expressão global do marcador H4Ac nas células metastáticas 21MT1, foi detectada em relação às outras linhagens. Os níveis de RNAm das principais enzimas relacionadas as modificações epigenéticas são consistentes com as observadas hipometilação genômica e hipoacetilação. Através de microscopia confocal, verificamos que o marcador H4Ac está localizado, na maior parte na periferia e o marcador H3K9me3, pericêntrico nos núcleos tumorais. Por fim, verificamos que o promotor P1 do gene TP53 apresenta um estado de cromatina aberta, e a expressão do gene TP53 é similar em todas as células da série 21T.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA was efficiently bound to water-soluble positively charged CdTe quantum dots (QDs) through complementary electrostatic interaction. These QDs-DNA complexes were disrupted and DNA was released by glutathione (GSH) at intracellular concentrations. Interestingly, there was almost no detectable DNA released by extracellular concentration of GSH. The formation of QDs-DNA complexes and GSH-mediated DNA release from the complexes were confirmed by dye displacement assay, electrophoretic mobility shift assay (EMSA), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thymidylate synthase (TS), an essential enzyme for DNA de novo synthesis, is a critical therapeutic target in cancer therapy. Previous study has shown that TS was able to bind to its own mRNA in human and E.coli, resulting in translational repression. Zebrafish is the best animal model for vertebrate study. In order to study the regulatory mechanism of zebrafish TS, the enzyme were expressed in E. coli BL21 (DE3) and it was purified to homogeneity. Electrophoretic mobility shift assay (EMSA) was used to detect the interaction of zebrafish TS protein and its own TS transcript in vitro and the results showed that zebrafish TS could bound with its own mRNA specifically. Further study revealed that zebrafish TS was able to interact with its own mRNA in vivo using immunoprecipitation : RT-PCR technique. The results provide evidence that zebrafish may be developed as an useful model for studying the anti-metabolism agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H(2)O(2). These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: A critical event in the pathogenesis of diabetic retinopathy is the inappropriate adherence of leukocytes to the retinal capillaries. Advanced glycation end-products (AGEs) are known to play a role in chronic inflammatory processes, and the authors postulated that these adducts may play a role in promoting pathogenic increases in proinflammatory pathways within the retinal microvasculature. METHODS: Retinal microvascular endothelial cells (RMECs) were treated with glycoaldehyde-modified albumin (AGE-Alb) or unmodified albumin (Alb). NFkappaB DNA binding was measured by electromobility shift assay (EMSA) and quantified with an ELISA: In addition, the effect of AGEs on leukocyte adhesion to endothelial cell monolayers was investigated. Further studies were performed in an attempt to confirm that this was AGE-induced adhesion by co-incubation of AGE-treated cells with soluble receptor for AGE (sRAGE). Parallel in vivo studies of nondiabetic mice assessed the effect of intraperitoneal delivery of AGE-Alb on ICAM-1 mRNA expression, NFkappaB DNA-binding activity, leukostasis, and blood-retinal barrier breakdown. RESULTS: Treatment with AGE-Alb significantly enhanced the DNA-binding activity of NFkappaB (P = 0.0045) in retinal endothelial cells (RMECs) and increased the adhesion of leukocytes to RMEC monolayers (P = 0.04). The latter was significantly reduced by co-incubation with sRAGE (P <0.01). Mice infused with AGE-Alb demonstrated a 1.8-fold increase in ICAM-1 mRNA when compared with control animals (P <0.001, n = 20) as early as 48 hours, and this response remained for 7 days of treatment. Quantification of retinal NFkappaB demonstrated a threefold increase with AGE-Alb infusion in comparison to control levels (AGE Alb versus Alb, 0.23 vs. 0.076, P <0.001, n = 10 mice). AGE-Alb treatment of mice also caused a significant increase in leukostasis in the retina (AGE-Alb versus Alb, 6.89 vs. 2.53, n = 12, P <0.05) and a statistically significant increase in breakdown of the blood-retinal barrier (AGE Alb versus Alb, 8.2 vs. 1.6 n = 10, P <0.001). CONCLUSIONS: AGEs caused upregulation of NFkappaB in the retinal microvascular endothelium and an AGE-specific increase in leukocyte adhesion in vitro was also observed. In addition, increased leukocyte adherence in vivo was demonstrated that was accompanied by blood-retinal barrier dysfunction. These findings add further evidence to the thinking that AGEs may play an important role in the pathogenesis of diabetic retinopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elevated levels of beta1,4-galactosyltransferase I (GalT I; EC 2.4.1.38) are detected in highly metastatic lung cancer PGBE1 cells compared with its less metastatic partner PGLH7 cells. Decreasing the GalT I surface expression by small interfering RNA or interfering with the surface of GalT I function by mutation inhibited cell adhesion on laminin, the invasive potential in vitro, and tyrosine phosphorylation of focal adhesion kinase. The mechanism by which GalT I activity is up-regulated in highly metastatic cells remains unclear. To investigate the regulation of GalT I expression, we cloned the 5'-region flanking the transcription start point of the GalT I gene (-1653 to +52). Cotransfection of the GalT I promoter/luciferase reporter and the Ets family protein E1AF expression plasmid increased the luciferase reporter activity in a dose-dependent manner. By deletion and mutation analyses, we identified an Ets-binding site between nucleotides -205 and -200 in the GalT I promoter that was critical for responsiveness to E1AF. It was identified that E1AF could bind to and activate the GalT I promoter by electrophoretic mobility shift assay in PGLH7 cells and COS1 cells. A stronger affinity of E1AF for DNA has contributed to the elevated expression of GalT I in PGBE1 cells. Stable transfection of the E1AF expression plasmid resulted in increased GalT I expression in PGLH7 cells, and stable transfectants migrated faster than control cells. Meanwhile, the content of the beta1,4-Gal branch on the cell surface was increased in stably transfected PGLH7 cells. GalT I expression can also be induced by epidermal growth factor and dominant active Ras, JNK1, and ERK1. These data suggest an essential role for E1AF in the activation of the human GalT I gene in highly metastatic lung cancer cells.