986 resultados para Electronic transition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resonant Raman behavior of the radial breathing modes are very useful to analyze the electronic property of carbon nanotubes. We investigated the resonant behaviors of Stokes and anti-Stokes radial breathing mode and its overtone of a metallic nanotube, and show how to accurately determine the electronic transition energy of carbon nanotubes from radial breathing modes and their overtones. Based on the present results, the previously reported resonant Raman behavior of the radial breathing modes of SWINT bundles can be interpreted very well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most cases the luminescence of Eu~(2+) consists of a d-f broad-band emission, in some particular hosts, however, Eu~(2+) can also give out f-f narrow-line emission. There are two factors of importance here: the first is the strength of the crystal-field

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Orbital energies and electronic transition energies of BH3·H2S and BH3·CO obtained from ultraviolet (HeI) photoelectron spectroscopy and electron energy loss spectroscopy are discussed in the light of quantum mechanical calculations. BH3·H2O has been characterized, for the first time, by means of the HeI spectrum and the ionization energies assigned to the various orbitals based on calculations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nontrivial electronic topology of a topological insulator is thus far known to display signatures in a robust metallic state at the surface. Here, we establish vibrational anomalies in Raman spectra of the bulk that signify changes in electronic topology: an E-g(2) phonon softens unusually and its linewidth exhibits an asymmetric peak at the pressure induced electronic topological transition (ETT) in Sb2Se3 crystal. Our first-principles calculations confirm the electronic transition from band to topological insulating state with reversal of parity of electronic bands passing through a metallic state at the ETT, but do not capture the phonon anomalies which involve breakdown of adiabatic approximation due to strongly coupled dynamics of phonons and electrons. Treating this within a four-band model of topological insulators, we elucidate how nonadiabatic renormalization of phonons constitutes readily measurable bulk signatures of an ETT, which will facilitate efforts to develop topological insulators by modifying a band insulator. DOI: 10.1103/PhysRevLett.110.107401

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Molybdenum disulphide is a layered transition metal dichalcogenide that has recently raised considerable interest due to its unique semiconducting and opto-electronic properties. Although several theoretical studies have suggested an electronic phase transition in molybdenum disulphide, there has been a lack of experimental evidence. Here we report comprehensive studies on the pressure-dependent electronic, vibrational, optical and structural properties of multilayered molybdenum disulphide up to 35 GPa. Our experimental results reveal a structural lattice distortion followed by an electronic transition from a semiconducting to metallic state at similar to 19 GPa, which is confirmed by ab initio calculations. The metallization arises from the overlap of the valance and conduction bands owing to sulphur-sulphur interactions as the interlayer spacing reduces. The electronic transition affords modulation of the opto-electronic gain in molybdenum disulphide. This pressure-tuned behaviour can enable the development of novel devices with multiple phenomena involving the strong coupling of the mechanical, electrical and optical properties of layered nanomaterials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-pi(1)*; S-1 state) and the shorter (1 pi-pi(1)*; S-2 state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S-2 state relative to the ground state. Raman excitation profiles of PQ (400-1800 cm(-1)) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C-2 nu symmetry constraint on the S-2 state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling. (C) 2015 AIP Publishing LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electronic absorption of EL2 centers has been clarified to be related to the electron acid hole photoionizations, and the transition from its ground state to metastable state, respectively. Under an illumination with a selected photon energy in the near infrared region, these three processes with different optical cross sections will show different kinetics against the illumination time. It has recently been shown that the photosensitivity (measured under 1.25 eV illumination) of the local vibrational mode absorption induced by some deep defect centers in SI-GaAs is a consequence of the electron and hole photoionizations of EL2. This paper directly measures the kinetics of the electronic transition associated with EL2 under 1.25 eV illumination, which implies the expected charge transfer among different charge states of the EL2 center. A calculation based on a simple rate equation model is in good agreement with the experimental results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electronic redistribution of an ion or atom induced by a sudden recoil of the nucleus occurring during the emission or capture of a neutral particle is theoretically investigated. For one-electron systems, analytical expressions are derived for the electronic transition probabilities to bound and continuum states. The quality of a B-spline basis set approach is evaluated from a detailed comparison with the analytical results. This numerical approach is then used Io study the dynamics of two-electron systems (neutral He and Ne ) using correlated wavefunctions for both the target and daughter ions. The total transition probabilities to discrete states, autoionizing states and direct single- and double-ionization probabilities are calculated from the pseudospectra. Sum rules for transition probabilities involving an initial bound state and a complete final series are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Trajectory surface hopping (TSH) is one of the most widely used quantum-classical algorithms for nonadiabatic molecular dynamics. Despite its empirical effectiveness and popularity, a rigorous derivation of TSH as the classical limit of a combined quantum electron-nuclear dynamics is still missing. In this work, we aim to elucidate the theoretical basis for the widely used hopping rules. Naturally, we concentrate thereby on the formal aspects of the TSH. Using a Gaussian wave packet limit, we derive the transition rates governing the hopping process at a simple avoided level crossing. In this derivation, which gives insight into the physics underlying the hopping process, some essential features of the standard TSH algorithm are retrieved, namely (i) non-zero electronic transition rate ("hopping probability") at avoided crossings; (ii) rescaling of the nuclear velocities to conserve total energy; (iii) electronic transition rates linear in the nonadiabatic coupling vectors. The well-known Landau-Zener model is then used for illustration. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770280]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The solvatochromic shift of the lowest singlet it pi -> pi* electronic transition in the all-trans, cis-13, cis-11, cis-9, and cis-7 retinal isomers were computed under the influence of water, methanol, and benzene solvents. Excitation energies were calculated in gas phase and in solution. The calculations in solution were performed considering the sequential Monte Carlo (MC) /Quantum Mechanical approach. The MC simulations were performed considering the full retinal isomer molecules and 900 water molecules, 900 methanol, or 400 benzene ones. The OPLS/AA parametrization was chosen for retinal, methanol, and benzene molecules and the SPC model was used for water one. From the MC calculations 100 independent configurations were selected, with 100 solvent molecules in thermodynamical equilibrium at T = 298.15 K. Average point-charges were obtained from those independent configurations for water, methanol, and benzene solvent. TDDFT and CASSCF//CASPT2 methodologies were used to compute the vertical excitation energy of the retinal isomers in different environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2076-2087, 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12000-7600 cm-1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm-1. A broad spectral feature observed for ferrous ion in the 12000-9000 cm-1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm-1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm-1 region resulting from the combinations of vibrational modes of (PO4)3- units.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alkylperoxyl radicals are intermediates in the oxidation Of hydrocarbons. The reactive nature of these intermediates, however, has made therin elusive to direct observation and isolation. We have employed ion trap mass spectrometry to synthesize and characterize 4-carboxylatocyclohexyl radical anions ((center dot)C(6)H(10)-CO(2)(-)) and observe their reactivity in the presence of dioxygen. The resulting reaction is facile (k = 1.8 x 10(-10) cm(3) molecule(-1) s(-1) or 30% of calculated collision rate) and results in (i) the addition Of O(2) to form stabilized 4-carboxylatocyclohexylperoxyl radical anions ((center dot)OO-C(6)H(10)-CO(2)(-)), providing the first direct observation of a cyclohexylperoxyl radical, and (ii) elimination of HO(2)(center dot) and HO(center dot) radicals consistent with recent laser-induced fluorescence studies of the reaction of neutral cyclohexyl radicals with O(2). Electronic structure calculations at the B3LYP/6-31+G(d) level of theory reveal viable pathways for the observed reactions showing that formation of the peroxyl radical is exothermic by 37 kcal mol(-1) with subsequent transition states its low as -6.6 kcal mol(-1) (formation of HO(2)(center dot)) and -9.1 kcal mol(-1) (formation of HO(center dot)) with respect to the entrance channel. The combined computational and experimental data Suggest that the structures of the reaction products correspond to cyclohexenes and epoxides from HO(2)(center dot) and HO(center dot) loss, respectively, while alternative pathways leading to cyclohexanone or ring-opened isomers ate not observed, Activation of the charged peroxyl radical (center dot)OO-C(6)H(10)-CO(2)(-) by collision induced disassociation also results in the loss Of HO(2)(center dot) and HO(center dot) radicals confirming that these products are directly connected to the peroxyl radical intermediate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ultraviolet bands of mercury bromide have been excited in uncondensed discharge and photographed with a quartz Littrow spectrograph. The class II system, lying between\lambda 2900 å to 2700 å, suggested byWieland as due to the triatomic molecule, has been studied in detail and ascribed to the diatomic molecule. The bands in the regionlambda 2900 å to 2770å have been analysed into two systems which may form the two components of a2 II –2 \sigma electronic transition with a2 II interval equal to 969·4 cm–1.Another system most probably due to2 \sigma–2 \sigma has been observed in the region\lambda 2770 to 2720.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

EELS and XPS studies show the presence of both adsorbed atomic and molecular oxygen at low temperatures. The nature of the oxide layer formed on the surface has been characterized by angular dependent and variable temperature EELS. A loss peak around 550 cm−1 is assigned to an electronic transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dimethyl sulphoxide (DMSO) and dimethyl formamide (DMF) complexes of Mn(III) perchlorate have been prepared and their conductivity, magnetic susceptibility and i.r. and electronic spectra studied. The complexes behave as uni-trivalent electrolytes in acetonitrile. Their magnetic moments of 5·1 B.M. show them to be of high spin type. Infra-red spectra show that oxygen is the donor atom in both complexes. The spin allowed electronic transition for d4 system, around 20,000 cm−1, ascribable to the 5Eg → 5T2g transition, suggests an octahedral configuration for these complexes