979 resultados para Electron beam induced electronic transport


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron beam induced electronic transport in primary alkyl amine-intercalated V2O5 nanotubes is investigated where the organic amine molecules are employed as molecular conductive wires to an aminosilanized substrate surface and contacted to Au interdigitated electrode contacts. The results demonstrate that the high conductivity of the nanotubes is related to the non-resonant tunnelling through the amine molecules and a reduced polaron hopping conduction through the vanadium oxide itself. Both nanotube networks and individual nanotubes exhibit similarly high conductivities where the minority carrier transport is bias dependent and nanotube diameter invariant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-irradiation studies have been carried out to elucidate the effects of electron beam irradiation on the structural, optical, dielectric, and thermal properties of high-density polyethylene (HDPE) films. The experimental results showed that both the optical band gap and activation energy of HDPE films decreases with an increase in the doses of electron radiation. The electrical measurements showed that dielectric constant and the ac conductivity of HDPE increases with an increase in the dose of electron radiation. The thermal analysis carried out using DSC and TGA revealed that the melting temperature, degree of crystallinity, and thermal stability of the HDPE films increased, obviously, due to the predominant cross-linking reaction following high doses of electron irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present electron-beam-induced oxidation of single- and bilayer graphene devices in a low-voltage scanning electron microscope. We show that the injection of oxygen leads to targeted etching at the focal point, enabling us to pattern graphene with a resolution of better than 20 nm. Voltage-contrast imaging, in conjunction with finite-element simulations, explain the secondary-electron intensities and correlate them to the etch profile. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices. The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM). The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface. The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64 pf It is large enough for the detection of the induced surface potential. The irradiation mode of electron beam (e-beam) influences the signal generation. When the e-beam irradiates on the surface of semiconductors continuously, a differential signal is obtained. The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection. The polarity of induced potential depends on the structure of potential barriers and surface states of samples. The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comprehensive analysis of the electrical properties, structure and composition of Pt interconnects, developed via mask-less, electron beam induced deposition of the carbon-free Pt precursor, Pt(PF3)4, is presented. The results demonstrate significantly improved electrical performance in comparison with that generated from the standard organometallic precursor, (CH3)3Pt(CpCH3). In particular, the Pt interconnects exhibited perfect ohmic behavior and resistivity that can be diminished to 0.24 × 10−3 Ω cm, which is only one order of magnitude higher than bulk Pt, in comparison to 0.2 Ω cm for the standard carbon-containing interconnects. A maximum current density of 1.87 × 107 A cm−2 was achieved for the carbon-free Pt, compared to 9.44 × 105 A cm−2 for the standard Pt precursor. The enhanced electrical properties of the as-deposited materials can be explained by the absence of large amounts of carbon impurities, and their further improvement by postdeposition annealing in N2. In-situ TEM heating experiments confirmed that the annealing step induces sintering of the Pt nanocrystals and improved crystallinity, which contributes to the enhanced electrical performance. Alternative annealing under reducing conditions resulted in improved performance of the standard Pt interconnects, while the carbon-free deposit suffered electrical and structural breakage due to formation of larger Pt islands

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron beam-induced deposition (EBID) is a direct write process where an electron beam locally decomposes a precursor gas leaving behind non-volatile deposits. It is a fast and relatively in-expensive method designed to develop conductive (metal) or isolating (oxide) nanostructures. Unfortunately the EBID process results in deposition of metal nanostructures with relatively high resistivity because the gas precursors employed are hydrocarbon based. We have developed deposition protocols using novel gas-injector system (GIS) with a carbon free Pt precursor. Interconnect type structures were deposited on preformed metal architectures. The obtained structures were analysed by cross-sectional TEM and their electrical properties were analysed ex-situ using four point probe electrical tests. The results suggest that both the structural and electrical characteristics differ significantly from those of Pt interconnects deposited by conventional hydrocarbon based precursors, and show great promise for the development of low resistivity electrical contacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface modifications induced on Teflon FEP and Mylar C polymer films by a low energy electron beam are probed using Raman and FTIR spectroscopy. The electron beam, which does not affect the Mylar C, surface, may break the copolymer chain into its monomers degrading the Teflon FEP surface. For Mylar C the electron beam decreases the roughness of the polymer surface. This difference in behavior may explain recent results in which the surface modifications investigated by measuring the second crossover energy shift in the electronic emission curve differed for the two polymers (Chinaglia et al [1]). In addition, the Raman data showed no evidence of carbon formation for either polymer samples, which is explained by the fact that only a low energy electron beam is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic transport in both intrinsic and acid-treated single-walled carbon nanotube networks containing more than 90% semiconducting nanotubes is investigated using temperature-dependent resistance measurements. The semiconducting behavior observed in the intrinsic network is attributed to the three-dimensional electron hopping mechanism. In contrast, the chemical doping mechanism in the acid-treated network is found to be responsible for the revealed metal-like linear resistivity dependence in a broad temperature range. This effective method to control the electrical conductivity of single-walled carbon nanotube networks is promising for future nanoscale electronics, thermometry, and bolometry. © 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal stress wave and spallation in aluminium alloy exposed to a high fluency and low energy electron beams are studied theoretically. A simple model for the study of energy deposition of electrons in materials is presented on the basis of some empirical formulae. Under the stress wave induced by energy deposition, microcracks and/or microvoids may appear in target materials, and in this case, the inelastic volume deformation should not vanish. The viscoplastic model proposed by Bodner and Partom with corresponding Gurson's yield function requires modification for this situation. The new constitutive model contains a scalar field variable description of the material damage which is taken as the void volume fraction of the polycrystalline material. Incorporation of the damage parameter permits description of rate-dependent, compressible, inelastic deformation and ductile fracture. The melting phenomenon has been observed in the experiment, therefore one needs to take into account the melting process in the intermediate energy deposition range. A three-phase equation of state used in the paper provides a more detailed and thermodynamical description of metals, particularly, in the melting region. The computational results based on the suggested model are compared with the experimental test for aluminium alloy, which is subjected to a pulsed electron beam with high fluency and low energy. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prepare HfO2 thin films by electron beam evaporation technology. The samples are annealed in air after deposition. With increasing annealing temperature, it is found that the absorption of the samples decreases firstly and then increases. Also, the laser-induced damage threshold (LIDT) increases firstly and then decreases. When annealing temperature is 473K, the sample has the highest LIDT of 2.17J/cm(2), and the lowest absorption of 18 ppm. By investigating the optical and structural characteristics and their relations to LIDT, it is shown that the principal factor dominating the LIDT is absorption.