998 resultados para Electromyography activity
Resumo:
The purpose of this study was to compare O(2) uptake ((.)VO(2)) and muscle electromyography activity kinetics during moderate and severe exercise to test the hypothesis of progressive recruitment of fast-twitch fibers in the explanation of the VO(2) slow component. After an incremental test to exhaustion, 7 trained cyclists (mean +/- SD, 61.4 +/- 4.2 ml x min(-1) x kg(- 1)) performed several square-wave transitions for 6 min at moderate and severe intensities on a bicycle ergometer. The (.)VO(2) response and the electrical activity (i.e., median power frequency, MDF) of the quadriceps vastus lateralis and vastus medialis of both lower limbs were measured continuously during exercise. After 2 to 3 min of exercise onset, MDF values increased similarly during moderate and severe exercise for almost all muscles whereas a (.)VO(2) slow component occurred during severe exercise. There was no relationship between the increase of MDF values and the magnitude of the (.)VO(2) slow component during the severe exercise. These results suggest that the origin of the slow component may not be due to the progressive recruitment of fast-twitch fibers.
Resumo:
Background Control of the trunk is critical for locomotor efficiency. However, investigations of trunk muscle activity and three-dimensional lumbo-pelvic kinematics during walking and running remain scarce. Methods. Gait parameters and three-dimensional lumbo-pelvic kinematics were recorded in seven subjects. Electromyography recordings of abdominal and paraspinal muscles were made using fine-wire and surface electrodes as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Findings. Kinematic data indicate that the amplitude but not timing of lumbo-pelvic motion changes with locomotor speed. Conversely, a change in locomotor mode is associated with temporal but not spatial adaptation in neuromotor strategy. That is, peak transverse plane lumbo-pelvic rotation occurs at foot strike during walking but prior to foot strike during running. Despite this temporal change, there is a strong correlation between the amplitude of transverse plane lumbo-pelvic rotation and stride length during walking and running. In addition, Jumbo-pelvic motion was asymmetrical during all locomotor tasks. Trunk muscle electromyography occurred biphasically in association with foot strike. Transversus abdominis was tonically active with biphasic modulation. Consistent with the kinematic data, electromyography activity of the abdominal muscles and the superficial fibres of multifidus increased with locomotor speed, and timing of peak activity of superficial multifidus and obliquus externus abdominis was modified in association with the temporal adaptation in lumbo-pelvic motion with changes in locomotor mode. Interpretation. These data provide evidence of the association between lumbo-pelvic motion and trunk muscle activity during locomotion at different speeds and modes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).
Resumo:
Introdução: As dificuldades encontradas em individuos após Acidente Vascular Encefálico, ao nível da marcha, influenciam significativamente o retorno ao trabalho, a participação na comunidade ou o desempenho nas actividades da vida diária. Objectivo: Neste trabalho, procurou-se verificar qual o efeito de um programa de intervenção em fisioterapia nos ajustes posturais antecipatórios que ocorrem previamente ao movimento voluntário e assim pré-determinar a sua contribuição para a estabilidade postural e o equilíbrio. Material e Métodos: Para testar os pressupostos inerentes, relatam-se dois casos clínicos de sujeitos do sexo masculino com diagnóstico de Acidente Vascular Encefálico. Estes foram submetidos a um programa de intervenção em fisioterapia, durante 10 semanas consecutivas, baseado no Conceito de Bobath e que teve em conta o principal problema de cada indivíduo. Foi monitorizada a actividade electromiográfica do ventre medial do Tibial Anterior e Solear na fase de pré-activação da marcha, em dois momentos distintos, no início e no fim da intervenção. Resultados: Dos resultados obtidos evidenciam-se as diferenças entre os tempos médios de pré-activação, bem como as diferenças entre a percentagem da contracção isométrica voluntária máxima atingida pelos músculos Tibial Anterior e Solear, direito e esquerdo, entre os dois momentos de avaliação, em ambos os sujeitos. Verificou-se, no entanto, que a actividade electromiográfica dos referidos músculos possui grande variabilidade. Conclusão: Os resultados sugerem que o programa de intervenção em fisioterapia parece ter tido influência no recrutamento da actividade muscular do TA e do SO, uma vez que, em termos médios absolutos, ocorreram diferenças após a implementação das estratégias e procedimentos da intervenção.
Resumo:
Introdução:O Controlo Postural é um processo neural complexo envolvido na organização da estabilidade e orientação da posição do corpo no espaço. A Instabilidade Funcional (IF) do tornozelo é descrita como uma perceção subjetiva de instabilidade articular, que afeta o controlo postural. Apesar de vários estudos terem investigado os fatores inerentes à IF ainda existe inconsistência nos resultados da literatura sobre os mecanismos envolvidos nesta. Objetivo (s):avaliar os ajustes posturais envolvidos na resposta a uma perturbação externa realizada de forma previsível e imprevisível em indivíduos com IF. Métodos:Estudo observacional analítico transversal, teve uma amostra de 20 indivíduos, que foram divididos em grupo com IF e grupo de controlo. Foi recolhida atividade eletromiográfica bilateral dos músculos longo e curto peroneal (PL e PC), tibial anterior (TA) e solear (SOL) associado a uma perturbação externa aplicada de forma previsível e imprevisível. Os ajustes posturais foram avaliados através da análise do início da atividade muscular, da magnitude global dos ajustes posturais compensatórios e antecipatórios e magnitude das respostas de curta e média latência Resultados: Na perturbação imprevisível não se verificaram diferenças significativas no início da atividade muscular (p>0,05). Enquanto na magnitude das respostas de curta e média latência verificou-se diferenças nos músculos TA (Ia,p=0,000; II, p=0,011), CP (Ia,p=0,029; II, p=0,001) e LP (Ia, p=0,030) entre o membro com IF e o controlo e no LP (II, p=0,011) entre o membro sem IF do grupo com IF e o controlo. Na perturbação previsível observaram-se diferenças nos ajustes posturais antecipatórios (APA) dos músculos TA (p=0,006) e LP (p=0,020) entre o membro sem IF do grupo com IF e o controlo. Conclusão: Os indivíduos com IF apresentam défices na magnitude das respostas de média e curta latência numa perturbação imprevisível e nos APA na perturbação previsível.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: to investigate the immediate effect of the vibrating platform on the neuromuscular performance of the quadriceps femoris and on the postural oscillation of subjects submitted to Anterior Cruciate Ligament (ACL) reconstruction. Materials and methods: this study is a randomized and blind clinical trial. Forty-four male volunteers (average age of 27,4 ±6,2 IMC of 26,85± 3,8 Kg/m² and post surgery timeframe of 17± 1,4 weeks) were randomized into two groups: OFF platform (n=22, protocol of exercise over the vibrating platform off) and ON platform (n=22 protocol of exercise over the vibrating platform on, 50Hz frequency and 4mm of amplitude). All volunteers were submitted to assessment the isokinetic evaluation of the quadriceps femoris (isometric and isokinetic at 60°/s) and of the electromyography activity of the muscles Vasto Lateralis (VL) and Vasto Medialis (VM), besides the postural oscillation (baropodometry) in two distinct moments: before and immediately after the intervention protocol. The data was analyzed through the SPSS 20.0 software, with a 5% significance level. To verify the homogeneity of the groups it was used an ANOVA one way, and a ANOVA mixed model to compare the intra and inter groups. Results: it was observed differences between the pre and the post, to latero lateral velocity, isometric torque peak and total work in comparison with intragroup. However, it wasn’t verified any difference in comparing the intergroup in the preevaluation and in the post-evaluation protocol over the vibrating platform. Conclusion: the use of the vibrating platform doesn’t change as an immediate manner the isokinetic performance of the quadriceps femoris, the electromyography activity of the VL and the VM, also doesn’t interfere with the postural oscillation of individuals that were submitted to the ACL reconstruction.