976 resultados para Electromagnetic wave diffraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical-analytical method is developed for solving surface integral equations (IEs) describing electromagnetic wave diffraction from arrays of complex-shaped planar reflectors. Solutions to these equations are regularized via analytical transformation of the separated singular part of the matrix kernel. Basis functions satisfying the metal-edge condition are determined on the entire surface of the complex region. The amplitude and phase responses of arrays consisting of polygonal reflectors are numerically investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of diffraction of an optical wave by a 2D periodic metal aperture array with square, circular, and ring apertures is solved with allowance for the finite permittivity of a metal in the optical band. The correctness of the obtained results is verified through comparison with experimental data. It is shown that the transmission coefficient can be substantially greater than the corresponding value reached in the case of diffraction by a grating in a perfectly conducting screen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interface between two polar semiconductors can support three types of phonon-plasmon-polariton modes propagating in three well-defined frequency windows ??1?[min(?1,?3),?R1], ??2?[max(?2,?4),?R2], and ??3?[min(?2,?4),?R3]. The limiting frequencies ?1,2,3,4 are defined by ?1(?)=0, ?2(?)=0, and ?R1,2,3 by ?1(?)+?2(?)=0, where ?i(?) are dielectric functions of the two media with i=1,2. The dispersion, decay distances, and polarization of the three modes are discussed. The variation of the limiting frequencies with the interface plasma parameter ???p22/?p12 reveals an interesting feature in the dispersion characteristics of these modes. For the interfaces for which the bulk coupled phonon-plasmon frequencies of medium 1 are greater than the LO frequency or are less than the TO frequency of medium 2, there exist two values of ?=?1 and ?2(

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple two-dimensional square cavity model is used to study shock attenuating effects of dust suspension in air. The GRP scheme for compressible flows was extended to simulate the fluid dynamics of dilute dust suspensions, employing the conventional two-phase approximation. A planar shock of constant intensity propagated in pure air over Aat ground and diffracted into a square cavity filled with a dusty quiescent suspension. Shock intensities were M-s = 1.30 and M-s = 2.032, dust loading ratios were alpha = 1 and alpha = 5, and particle diameters were d = 1, 10 and 50 mum. It was found that the diffraction patterns in the cavity were decisively attenuated by the dust suspension, particularly for the higher loading ratio. The particle size has a pronounced effect on the flow and wave pattern developed inside the cavity. Wall pressure historics were recorded for each of the three cavity walls, showing a clear attenuating effect of the dust suspension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the calculated results about the propagation properties of electromagnetic wave in a plasma slab are described. The relationship of the propagation properties with frequencies of electromagnetic wave, and parameters of plasma (electron temperature, electron density, dimensionless collision frequency and the size of the plasma slab) is analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffraction and reflection of planar shock wave around a dusty square cavity is investigated numerically, which is embedded in the net bottom surface of a two-dimensional channel, and the induced gas-particle two-phase now. The wave patterns at different times are obtained for three different values of the particle diameter. The computational results show that the existence of particles affects appreciably the shock wave diffraction and cavity flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters n(e), v, w, L, w(b). The phi800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 similar to 35) GHz (w = 2pif, wave length lambda = 15 cm similar to 8 mm). The electron density in the plasma is n(e) = (3 x 10(10) similar to 1 x 10(14)) cm(-3). The collision frequency v = (1 x 10(8) similar to 6 x 10(10)) Hz. The thickness of the plasma layer L = (2 similar to 80) cm. The electron circular frequency w(b) = eB(0)/m(e), magnetic flux density B-0 = (0 similar to 0.84) T. The experimental results show that when the plasma layer is thick (such as L/lambda greater than or equal to 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters n(e), v, w, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and lambda are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range, but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters n(e), v, w, L. In fact, if w < w(p), v(2) much less than w(2), the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if w > w(p), v(2) much less than w(2) (just v approximate to f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power attenuation value under the magnetic field and without a magnetic field. The result indicates that the value measured under the magnetic field shows a distinct improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions of oblique incident probe wave with oncoming ionization fronts have been investigated using moving boundary conditions. Field conversion coefficients of reflection, transmission and magnetic modes produced in the interactions are derived. Phase matching conditions at the front and frequency up-shifting formulas for the three modes are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromagnetic wave propagation and scattering in a sphere composed of an inhomogeneous medium having random variations in its permittivity are studied by utilizing the Born approximation in solving the vector wave equation. The variations in the permittivity are taken to be isotropic and homogeneous, and are spatially characterized by a Gaussian correlation function. Temporal variations in the medium are not considered.

Two particular problems are considered: i) finding the far-zone electric field when an electric or magnetic dipole is situated at the center of the sphere, and ii) finding the electric field at the sphere's center when a linearly polarized plane wave is incident upon it. Expressions are obtained for the mean-square magnitudes of the scattered field components; it is found that the mean of the product of any two transverse components vanishes. The cases where the wavelength is much shorter than correlation distance of the medium and where it is much longer than it are both considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear amplitude modulation of electromagnetic waves propagating in pair plasmas, e.g., electron-positron or fullerene pair-ion plasmas, as well as three-component pair plasmas, e.g., electron-positron-ion plasmas or doped (dusty) fullerene pair-ion plasmas, assuming wave propagation in a direction perpendicular to the ambient magnetic field, obeying the ordinary (O-) mode dispersion characteristics. Adopting a multiple scales (reductive perturbation) technique, a nonlinear Schrodinger-type equation is shown to govern the modulated amplitude of the magnetic field (perturbation). The conditions for modulation instability are investigated, in terms of relevant parameters. It is shown that localized envelope modes (envelope solitons) occur, of the bright- (dark-) type envelope solitons, i.e., envelope pulses (holes, respectively), for frequencies below (above) an explicit threshold. Long wavelength waves with frequency near the effective pair plasma frequency are therefore unstable, and may evolve into bright solitons, while higher frequency (shorter wavelength) waves are stable, and may propagate as envelope holes.(c) 2007 American Institute of Physics.