993 resultados para Electromagnetic transient analyses
Resumo:
The results presented in this paper are based on a research about the application of approximated transformation matrices for electromagnetic transient analyses and simulations in transmission lines. Initially, it has developed the application of a single real transformation matrix for a double three-phase transmission lines, because the symmetry of the distribution of the phase conductors and the ground wires. After this, the same type of transformation matrix has applied for symmetrical single three-phase transmission lines. Analyzing asymmetrical single three-phase lines, it has used three different line configurations. For these transmission line types, the errors between the eigenvalues and the approximated results, called quasi modes, have been considered negligible. on the other hand, the quasi mode eigenvalue matrix for each case was not a diagonal one. and the relative values of the off-diagonal elements of the approximated quasi mode matrix are not negligible, mainly for the low frequencies. Based on this problem, a correction procedure has been applied for minimizing the mentioned relative values. For the correction procedure application, symmetrical and asymmetrical single three-phase transmission line samples have been used. Checking the correction procedure results, analyses and simulations have been carried out in mode and time domain. In this paper, the last results of mentioned research are presented and they related to the time domain simulations.
Resumo:
Best estimate analysis of rod ejection transients requires 3D kinetics core simulators. If they use cross sections libraries compiled in multidimensional tables,interpolation errors – originated when the core simulator computes the cross sections from the table values – are a source of uncertainty in k-effective calculations that should be accounted for. Those errors depend on the grid covering the domain of state variables and can be easily reduced, in contrast with other sources of uncertainties such as the ones due to nuclear data, by choosing an optimized grid distribution. The present paper assesses the impact of the grid structure on a PWR rod ejection transient analysis using the coupled neutron-kinetics/thermal-hydraulicsCOBAYA3/COBRA-TF system. Forthispurpose, the OECD/NEA PWR MOX/UO2 core transient benchmark has been chosen, as material compositions and geometries are available, allowing the use of lattice codes to generate libraries with different grid structures. Since a complete nodal cross-section library is also provided as part of the benchmark specifications, the effects of the library generation on transient behavior are also analyzed.Results showed large discrepancies when using the benchmark library and own-generated libraries when compared with benchmark participants’ solutions. The origin of the discrepancies was found to lie in the nodal cross sections provided in the benchmark.
Resumo:
Some changes in the application of the numeric trapezoidal integration are analyzed for applications considering pi circuits. It is considered numeric and computational proceedings for improving the numeric results obtained with associations of pi circuits. In numeric integration solutions of the linear systems, it is common to represent these associations of pi circuits by only one matrix. This representation introduces undesirable numeric oscillations in simulations of the dynamics of wave propagation in electrical systems. The proposed changes improve the results of application of cascades of pi circuits associated to the trapezoidal integration, avoiding that the numerical oscillations, or Gibb's oscillations, have high values and are slowly damped. For the carried out simulations, different number of pi circuits and voltage sources are checked, confirming the reduction of the influence of the numeric oscillations on the obtained results. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this article, it is represented by state variables phase a transmission line which parameters are considered frequency independently and frequency dependent. It is analyzed what is the reasonable number of pi circuits and the number of blocks composed by parallel resistor and inductor in parallel for reduction of numerical oscillations. It is simulated the numerical routine with and without the effect of frequency in the longitudinal parameters. Initially, it is used state variables and pi circuits representing the transmission line composing a linear system which is solved by numerical routines based on the trapezoidal rule. The effect of frequency on the line is synthesized by resistors and inductors in parallel and this representation is analyzed in details. It is described transmission lines and the frequency influence in these lines through the state variables.
Resumo:
A breaker restrike is an abnormal arcing phenomenon, leading to a possible breaker failure. Eventually, this failure leads to interruption of the transmission and distribution of the electricity supply system until the breaker is replaced. Before 2008, there was little evidence in the literature of monitoring techniques based on restrike measurement and interpretation produced during switching of capacitor banks and shunt reactor banks in power systems. In 2008 a non-intrusive radiometric restrike measurement method and a restrike hardware detection algorithm were developed by M.S. Ramli and B. Kasztenny. However, the limitations of the radiometric measurement method are a band limited frequency response as well as limitations in amplitude determination. Current restrike detection methods and algorithms require the use of wide bandwidth current transformers and high voltage dividers. A restrike switch model using Alternative Transient Program (ATP) and Wavelet Transforms which support diagnostics are proposed. Restrike phenomena become a new diagnostic process using measurements, ATP and Wavelet Transforms for online interrupter monitoring. This research project investigates the restrike switch model Parameter „A. dielectric voltage gradient related to a normal and slowed case of the contact opening velocity and the escalation voltages, which can be used as a diagnostic tool for a vacuum circuit-breaker (CB) at service voltages between 11 kV and 63 kV. During current interruption of an inductive load at current quenching or chopping, a transient voltage is developed across the contact gap. The dielectric strength of the gap should rise to a point to withstand this transient voltage. If it does not, the gap will flash over, resulting in a restrike. A straight line is fitted through the voltage points at flashover of the contact gap. This is the point at which the gap voltage has reached a value that exceeds the dielectric strength of the gap. This research shows that a change in opening contact velocity of the vacuum CB produces a corresponding change in the slope of the gap escalation voltage envelope. To investigate the diagnostic process, an ATP restrike switch model was modified with contact opening velocity computation for restrike waveform signature analyses along with experimental investigations. This also enhanced a mathematical CB model with the empirical dielectric model for SF6 (sulphur hexa-fluoride) CBs at service voltages above 63 kV and a generalised dielectric curve model for 12 kV CBs. A CB restrike can be predicted if there is a similar type of restrike waveform signatures for measured and simulated waveforms. The restrike switch model applications are used for: computer simulations as virtual experiments, including predicting breaker restrikes; estimating the interrupter remaining life of SF6 puffer CBs; checking system stresses; assessing point-on-wave (POW) operations; and for a restrike detection algorithm development using Wavelet Transforms. A simulated high frequency nozzle current magnitude was applied to an Equation (derived from the literature) which can calculate the life extension of the interrupter of a SF6 high voltage CB. The restrike waveform signatures for a medium and high voltage CB identify its possible failure mechanism such as delayed opening, degraded dielectric strength and improper contact travel. The simulated and measured restrike waveform signatures are analysed using Matlab software for automatic detection. Experimental investigation of a 12 kV vacuum CB diagnostic was carried out for the parameter determination and a passive antenna calibration was also successfully developed with applications for field implementation. The degradation features were also evaluated with a predictive interpretation technique from the experiments, and the subsequent simulation indicates that the drop in voltage related to the slow opening velocity mechanism measurement to give a degree of contact degradation. A predictive interpretation technique is a computer modeling for assessing switching device performance, which allows one to vary a single parameter at a time; this is often difficult to do experimentally because of the variable contact opening velocity. The significance of this thesis outcome is that it is a non-intrusive method developed using measurements, ATP and Wavelet Transforms to predict and interpret a breaker restrike risk. The measurements on high voltage circuit-breakers can identify degradation that can interrupt the distribution and transmission of an electricity supply system. It is hoped that the techniques for the monitoring of restrike phenomena developed by this research will form part of a diagnostic process that will be valuable for detecting breaker stresses relating to the interrupter lifetime. Suggestions for future research, including a field implementation proposal to validate the restrike switch model for ATP system studies and the hot dielectric strength curve model for SF6 CBs, are given in Appendix A.
Resumo:
In this article, it is represented by state variables phase a transmission line which parameters are considered frequency independently and frequency dependent. Based on previous analyses, it is used the reasonable number of p circuits and the number of blocks composed by parallel resistor and inductor for reduction of numerical oscillations. It is analyzed the influence of the increase of the RL parallel blocks in the obtained results. The RL parallel blocks are used for inclusion of the frequency influence in the transmission line longitudinal parameter. It is a simple model that is been used by undergraduate students for simulation of traveling wave phenomena in transmission lines. Considering the model without frequency influence, it is included a representation of the corona effect. Some simulations are carried considering the corona effect and they are compared to the results without this phenomenon.
Resumo:
This paper made an analysis of some numerical integration methods that can be used in electromagnetic transient simulations. Among the existing methods, we analyzed the trapezoidal integration method (or Heun formula), Simpson's Rule and Runge-Kutta. These methods were used in simulations of electromagnetic transients in power systems, resulting from switching operations and maneuvers that occur in transmission lines. Analyzed the characteristics such as accuracy, computation time and robustness of the methods of integration.
Resumo:
In transmission line transient analyses, a single real transformation matrix can obtain exact modes when the analyzed line is transposed. For non-transposed lines, the results are not exact. In this paper, non-symmetrical and non transposed three-phase line samples are analyzed with a single real transformation matrix application (Clarke's matrix). Some interesting characteristics of this matrix application are: single, real, frequency independent, line parameter independent, identical for voltage and current determination. With Clarke's matrix use, mathematical simplifications are obtained and the developed model can be applied directly in programs based on time domain. This model works without convolution procedures to deal with phase-mode transformation. In EMTP programs, Clarke's matrix can be represented by ideal transformers and the frequency dependent line parameters can be represented by modified-circuits. With these representations, the electrical values at any line point can be accessed for phase domain or mode domain using the Clarke matrix or its inverse matrix. For symmetrical and non-transposed lines, the model originates quite small errors. In addition, the application of the proposed model to the non-symmetrical and non-transposed three phase transmission lines is investigated. ©2005 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This study examines the thermal efficiency of the operation of arc furnace and the effects of harmonics and voltage dips of a factory located near Bangkok. It also attempts to find ways to improve the performance of the arc furnace operation and minimize the effects of both harmonics and voltage dips. A dynamic model of the arc furnace has been developed incorporating both electrical and thermal characteristics. The model can be used to identify potential areas for improvement of the furnace and its operation. Snapshots of waveforms and measurement of RMS values of voltage, current and power at the furnace, at other feeders and at the point of common coupling were recorded. Harmonic simulation program and electromagnetic transient simulation program were used in the study to model the effects of harmonics and voltage dips and to identify appropriate static and dynamic filters to minimize their effects within the factory. The effects of harmonics and voltage dips were identified in records taken at the point of common coupling of another factory supplied by another feeder of the same substation. Simulation studies were made to examine the results on the second feeder when dynamic filters were used in the factory which operated the arc furnace. The methodology used and the mitigation strategy identified in the study are applicable to general situation in a power distribution system where an arc furnace is a part of the load of a customer
Resumo:
A superconducting fault current limiter (SFCL) in series with a downstream circuit breaker could provide a viable solution to controlling fault current levels in electrical distribution networks. In order to integrate the SFCL into power grids, we need a way to conveniently predict the performance of the SFCL in a given scenario. In this paper, short circuit analysis based on the electromagnetic transient program was used to investigate the operational behavior of the SFCL installed in an electrical distribution grid. System studies show that the SFCL can not only limit the fault current to an acceptable value, but also mitigate the voltage sag. The transient recovery voltage (TRV) could be remarkably damped and improved by the presence of the SFCL after the circuit breaker is opened to clear the fault. © 2007 British Crown Copyright.
Resumo:
Eventually, violations of voltage limits at buses or admissible loadings of transmission lines and/or power transformers may occur by the power system operation. If violations are detected in the supervision process, corrective measures may be carried out in order to eliminate them or to reduce their intensity. Loading restriction is an extreme solution and should only be adopted as the last control action. Previous researches have shown that it is possible to control constraints in electrical systems by changing the network topology, using the technique named Corrective Switching, which requires no additional costs. In previous works, the proposed calculations for verifying the ability of a switching variant in eliminating an overload in a specific branch were based on network reduction or heuristic analysis. The purpose of this work is to develop analytical derivation of linear equations to estimate current changes in a specific branch (due to switching measures) by means of few calculations. For bus-bar coupling, derivations will be based on short-circuit theory and Relief Function methodology. For bus-bar splitting, a Relief Function will be derived based on a technique of equivalent circuit. Although systems of linear equations are used to substantiate deductions, its formal solution for each variant, in real time does not become necessary. A priority list of promising variants is then assigned for final check by an exact load flow calculation and a transient analysis using ATP Alternative Transient Program. At last, results obtained by simulation in networks with different features will be presented
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Complex electro-optical analysis is a very useful approach to separate different kinetic processes that occur during ionic insertion reactions in electrochromic oxide materials. In this paper, we use this type of combined technique to investigate ionic and optical changes in different oxide host systems, i.e., in two oxide hosts, specifically WO3 and Nb2O5. A comparison of their electro-optical responses revealed the presence of an ionic trapping contribution to the kinetics of the coloring sites, which was named here as coloring ionic trapping state. As expected, this coloring trapping process is slower in Nb2O5 since the reduction potential of Nb2O5 is more negative (more energy is needed for a higher degree of coloration). A phenomenological solid-state model that encompasses homogeneous charge transfer and valence trapping was proposed to explain the coloring ionic trapping process. Basically the model is able to explain how ionic dynamics at low frequency region, i.e., the slower kinetic step, controls the coloring kinetics, i.e., how it is capable to regulate the coloring rates.Optical transient analyses demonstrated the possibility of the presence of more than one coloring ionic trap, indicating the complexity of the processes involved in coloration phenomenon in metal oxide host systems. (C) 2008 Published by Elsevier Ltd.