866 resultados para Electrochemical treatment. Effluent separator box of water and oil. Oil products
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Mode of access: Internet.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background Biofloc technology (BFT), a rearing method with little or no water exchange, is gaining popularity in aquaculture. In the water column, such systems develop conglomerates of microbes, algae and protozoa, together with detritus and dead organic particles. The intensive microbial community presents in these systems can be used as a pond water quality treatment system, and the microbial protein can serve as a feed additive. The current problem with BFT is the difficulty of controlling its bacterial community composition for both optimal water quality and optimal shrimp health. The main objective of the present study was to investigate microbial diversity of samples obtained from different culture environments (Biofloc technology and clear seawater) as well as from the intestines of shrimp reared in both environments through high-throughput sequencing technology. Results Analyses of the bacterial community identified in water from BFT and “clear seawater” (CW) systems (control) containing the shrimp Litopenaeus stylirostris revealed large differences in the frequency distribution of operational taxonomic units (OTUs). Four out of the five most dominant bacterial communities were different in both culture methods. Bacteria found in great abundance in BFT have two principal characteristics: the need for an organic substrate or nitrogen sources to grow and the capacity to attach to surfaces and co-aggregate. A correlation was found between bacteria groups and physicochemical and biological parameters measured in rearing tanks. Moreover, rearing-water bacterial communities influenced the microbiota of shrimp. Indeed, the biofloc environment modified the shrimp intestine microbiota, as the low level (27 %) of similarity between intestinal bacterial communities from the two treatments. Conclusion This study provides the first information describing the complex biofloc microbial community, which can help to understand the environment-microbiota-host relationship in this rearing system.
Resumo:
The thermo-solvatochromism of 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr(2), has been studied in mixtures of water, W, with ionic liquids, ILs, in the temperature range of 10 to 60 degrees C, where feasible. The objectives of the study were to test the applicability of a recently introduced solvation model, and to assess the relative importance of solute-solvent solvophobic interactions. The ILs were 1-allyl-3-alkylimidazolium chlorides, where the alkyl groups are methyl, 1-butyl, and 1-hexyl, respectively. The equilibrium constants for the interaction of W and the ILs were calculated from density data; they were found to be linearly dependent on N(C), the number of carbon atoms of the alkyl group; van't Hoff equation (log K versus 1/T) applied satisfactorily. Plots of the empirical solvent polarities, E(T) (MePMBr(2)) in kcal mol(-1), versus the mole fraction of water in the binary mixture, chi(w), showed non-linear, i.e., non-ideal behavior. The dependence of E(T) (MePMBr(2)) on chi(w), has been conveniently quantified in terms of solvation by W, IL, and the ""complex"" solvent IL-W. The non-ideal behavior is due to preferential solvation by the IL and, more efficiently, by IL-W. The deviation from linearity increases as a function of increasing N(C) of the IL, and is stronger than that observed for solvation of MePMBr(2) by aqueous 1-propanol, a solvent whose lipophilicity is 12.8 to 52.1 times larger than those of the ILs investigated. The dependence on N(C) is attributed to solute-solvent solvophobic interactions, whose relative contribution to solvation are presumably greater than that in mixtures of water and 1-propanol.
Resumo:
The effect of four irrigation levels (50; 75; 100 and 150% of the evaporation in the class A pan) and four levels of N (0,075; 0, 150; 0,225 and 0,300 kg(-1)), were evaluated on productivity and components of production of the watermelon `Charleston Gray`. The experiment was conducted under field conditions, from October/2003 to January/2004, using a randomized split-plot design, with the factor depths in plot and depths of N in split-plot. It was verified that the factors water and nitrogen presented a highly significant effect in the yield of watermelon, while the interaction among the factors was not significant. The maximum productivity of the watermelon (68.59 Mg ha(-1)) was obtained with 421 mm of water and 267 kg ha(-1) of N. The water was more efficiently used with increments in dosage of N, being the maximum value observed of 279.54 kg ha(-1) mm(-1), obtained with a depth of water of 205 mm and a depths of N of 225 kg ha(-1). The maximum efficiency of the use of the water for the nitro en was 221 kg ha(-1) mm(-1), for 249 kg ha(-1) of N. The sugar content of the watermelon, measured in degrees Brix, was affected by the depths of irrigation, depths of N and by its interactions.
Resumo:
In the process of phosphate rock acidulation, several impure P compounds may be formed along with the desirable Ca and NH4 phosphates. Such compounds normally reduce the content of water-soluble P and thus the agronomic effectiveness of commercial fertilizers. In order to study this problem, a greenhouse experiment consisting of three consecutive corn crops was conducted in samples of a Red-Yellow Latosol (Typical Hapludox) in a completely randomized design (6 x 2 x 2), with four replicates. Six commercial fertilizers were added to 2 kg of soil at a rate of 70 mg kg-1 P, based on the content of soluble P in neutral ammonium citrate plus water (NAC + H2O) of the fertilizers. Fertilizer application occurred either in the original form or leached to remove the water-soluble fraction, either by mixing the fertilizer with the whole soil in the pots or with only 1 % of its volume. The corn plants were harvested 40 days after emergence to determine the shoot dry matter and accumulated P. For the first crop and localized application, the elimination of water-soluble P from the original fertilizers resulted in less bioavailable P for the plants. For the second and third crops, the effects of P source, leaching and application methods were not as evident as for the first, suggesting that the tested P sources may have similar efficiencies when considering successive cropping. The conclusion was drawn that the water-insoluble but NAC-soluble fractions of commercial P fertilizers are not necessarily inert because they can provide P in the long run.
Resumo:
This study presents an evaluation of the stable isotopic composition of water (hydrogen and oxygen) and dissolved inorganic carbon (DIC) of Lake Geneva, a deep, peri-alpine lake situated at the border between Switzerland and France. The research goal is to apply vertical and seasonal variations of the isotope compositions to evaluate mixing processes of pollutants, nutrients and oxygen. Depth profiles were sampled at different locations throughout Lake Geneva on a monthly and seasonal basis over the course of three years (2009-2011). The results of the oxygen isotopic composition indicate a Rhône River interflow, which can be traced for about 55 km throughout the lake during summer. The Rhône River interflow is 7 to 15 m thick and the molar fraction of Rhône water is estimated to amount up to 37 %. Calculated density of the water and measured isotopic compositions demonstrate that the interflow depth changes in conjunction with the density gradient in the water column during fall. Partial pressure of CO2 indicates that the epilimnion is taking up CO2 from the atmosphere between spring and fall. The epilimnion is most enriched in 13CDIC in September and a progressive depletion of 13CDIC can be observed in the metalimnion from spring to late fall. This stratification is dependent on the local density stratification and the results demonstrate that parameters, which are indicating photosynthesis, are not necessarily linked to δ13CDIC values. In addition, the amount of primary production shows a strong discrepancy between summer 2009 and 2010, but δ13CDIC values of the epilimnion and metalimnion do not indicate variations. In the hypolimnion of the deep lake δ13CDIC values are constant and the progressive depletion allows tracing remineralization processes. The combination of stable carbon and oxygen isotopic compositions allows furthermore tracing Rhône River water fractions, as well as wastewater, stormwater and anthropogenic induced carbon in the water column of the shallow Bay of Vidy. In combination with the results of measured micropollutants, the study underlines that concentrations of certain substances may be related to the Rhône River interflow and/or remineralization of particulate organic carbon. Water quality monitoring and research should therefore be extended to the metalimnion as well as sediment water interface.
Resumo:
Total sediment and water organic carbon and nutrient (nitrogen and phosphorus) concentrations of different environment types of a Mediterranean coastal wetland (temporary and brackish, temporary and freshwater, semi-permanent and brackish, and permanent and brackish basins) were analysed during two hydroperiods. A nitrogen limitation was found for both sediment and water. The total organic carbon concentration of the water was significantly related to the water level, which varies throughout the hydroperiods. In contrast, the total organic carbon concentration of the sediment was not related to water level. However, significant differences in total organic carbon of the sediment were found between hydroperiods. On the other hand, total organic carbon of the sediment varied spatially, being higher in temporary brackish basins with lower sand content, and lower in permanent and semi-permanent brackish basins with higher sand content
Resumo:
In the present study, a reversed-phase high-performance liquid chromatographic (RP-HPLC) procedure was developed and validated for the simultaneous determination of seven water-soluble vitamins (thiamine, riboflavin, niacin, cyanocobalamin, ascorbic acid, folic acid, and p-aminobenzoic acid) and four fat-soluble vitamins (retinol acetate, cholecalciferol, α-tocopherol, and phytonadione) in multivitamin tablets. The linearity of the method was excellent (R² > 0.999) over the concentration range of 10 - 500 ng mL-1. The statistical evaluation of the method was carried out by performing the intra- and inter-day precision. The accuracy of the method was tested by measuring the average recovery; values ranged between 87.4% and 98.5% and were acceptable quantitative results that corresponded with the label claims.