974 resultados para Electrochemical treatment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of consecutive cyclic polarization in de-aerated 0.5 M NaOH solutions on the surface microstructure of mechanically polished Cu-Al-Ag alloys of different compositions and heat treatments has been studied using optical microscopy, SEM and EDS. The current peaks of the cyclic polarization curves do not depend on the alloy composition in the composition range studied. The repetitive potential scans between H2 and O2 evolution in alkaline media lead to preferential dissolution of aluminium, the roughness and phase composition of the surface of the alloys changing significantly. The quasistationary I-E curves of the different Cu-Al-Ag alloys studied consist in the superposition of the quasistationary I-E curves of high-purity Cu and Ag, the EDS microanalysis showing that aluminium is not present on the surface of the alloy in these conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced oxidation processes (AOPs) are modern methods using reactive hydroxyl radicals for the mineralization of organic pollutants into simple inorganic compounds, such as CO2 and H2O. Among AOPs electrochemical oxidation (EO) is a method suitable for coloured and turbid wastewaters. The degradation of pollutants occurs on electrocatalytic electrodes. The majority of electrodes contain in their structure either expensive materials (diamond and Pt-group metals) or are toxic for the environment compounds (Sb or Pb). One of the main disadvantages of electrochemical method is the polarization and contamination of electrodes due to the deposition of reaction products on their surface, which results in diminishing of the process efficiency. Ultrasound combined with the electrochemical degradation process eliminates electrode contamination because of the continuous mechanical cleaning effect produced by the formation and collapse of acoustic cavitation bubbles near to the electrode surface. Moreover, high frequency ultrasound generates hydroxyl radicals at water sonolysis. Ultrasound-assisted EO is a non-selective method for oxidation of different organic compounds with high degradation efficiencies. The aim of this research was to develop novel sustainable and cost-effective electrodes working as electrocatalysts and test their activity in electrocatalytic oxidation of organic compounds such as dyes and organic acids. Moreover, the goal of the research was to enhance the efficiency of electrocatalytic degradation processes by assisting it with ultrasound in order to eliminate the main drawbacks of a single electrochemical oxidation such as electrodes polarization and passivation. Novel Ti/Ta2O5-SnO2 electrodes were developed and found to be electrocatalytically active towards water (with 5% Ta content, 10 oxide film layers) and organic compounds oxidation (with 7.5% Ta content, 8 oxide film layers) and therefore these electrodes can be applicable in both environmental and energy fields. The synergetic effect of combined electrolysis and sonication was shown while conducting sonoelectrochemical (EO/US) degradation of methylene blue (MB) and formic acid (FA). Complete degradation of MB and FA was achieved after 45 and 120 min of EO/US process respectively in neutral media. Mineralization efficiency of FA over 95% was obtained after 2 h of degradation using high frequency ultrasound (381, 863, 1176 kHz) combined with 9.1 mA/cm2 current density. EO/US degradation of MB provided over 75% mineralization in 8 h. High degradation kinetic rates and mineralization efficiencies of model pollutants obtained in EO/US experiments provide the preconditions for further extrapolation of this treatment method to pilot scale studies with industrial wastewaters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Boron-doped diamond electrodes have emerged as anodic material due to their high physical, chemical and electrochemical stability. These characteristics make it particularly interesting for electrochemical wastewater treatments and especially due to its high overpotential for the Oxygen Evolution Reaction. Diamond electrodes present the maximum efficiency in pollutant removal in water, just limited by diffusion-controlled electrochemical kinetics. Results are presented for the elimination of benzoic acid and for the electrochemical treatment of synthetic tannery wastewater. The results indicate that diamond electrodes exhibit the best performance for the removal of total phenols, COD, TOC, and colour.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cold-worked austenitic stainless steels have been subject to a pulsed electrochemical treatment in fairly concentrated aqueous solutions of sodium nitrite. The electrochemical reactions that occur transform the strain-induced martensite phase, originally formed by the cold work, back to the austenite phase. However, unlike the conventional thermal annealing process, electrochemically induced surface annealing also hardens the surface of the alloy. Because the process causes transformation of the surface martensite, we term it "electrochemical surface annealing", despite the fact that it results in an increase in surface hardness.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, electrochemical and photo-assisted electrochemical processes are used for color, total organic carbon (TOC) and chemical oxygen demand (COD) degradation of one of the most abundant and strongly colored industrial wastewaters, which results from the dyeing of fibers and fabrics in the textile industry. The experiments were carried out in an 18L pilot-scale tubular low reactor with 70% TiO2/30% RuO2 DSA. A synthetic acid blue 40 solution and real dye house wastewater, containing the same dye, were used for the experiments. By using current density of 80 mA cm(-2) electrochemical process has the capability to remove 80% of color, 46% of TOC and 69% of COD. When used the photochemical process with 4.6 mW cm(-2) of 254nm UV-C radiation to assist the electrolysis, has been obtained 90% of color, 64% of TOC and 60% of COD removal in 90 minutes of processing; furthermore, 70% of initial color was degraded within the first 15 minutes. Experimental runs using dye house wastewater resulted in 78% of color, 26% of TOC and 49% of COD in electrolysis at 80 mA cm(-2) and 90 min; additionally, when photo-assisted, electrolysis resulted in removals of 85% of color, 42% of TOC and 58% of COD. For the operational conditions used in this study, color, TOC and COD showed pseudo-first-order decaying profiles. Apparent rate constants for degradation of TOC and COD were improved by one order of magnitude when the photo-electrochemical process was used.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The industrial wastewater from resin production plants contains as major components phenol and formaldehyde, which are traditionally treated by biological methods. As a possible alternative method, electrochemical treatment was tested using solutions containing a mixture of phenol and formaldehyde simulating an industrial effluent. The anode used was a dimensionally stable anode (DSAA (R)) of nominal composition Ti/Ru0.3Ti0.7O2, and the solution composition during the degradation process was analyzed by liquid chromatography and the removal of total organic carbon. From cyclic voltammetry, it is observed that for formaldehyde, a small offset of the beginning of the oxygen evolution reaction occurs, but for phenol, the reaction is inhibited and the current density decreases. From the electrochemical degradations, it was determined that 40 mA cm(-2) is the most efficient current density and the comparison of different supporting electrolytes (Na2SO4, NaNO3, and NaCl) indicated a higher removal of total organic carbon in NaCl medium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a systematic study of the effect of the electrochemical treatment (galvanostatic electrolysis in a filter-press electrochemical cell) on the surface chemistry and porous texture of commercial activated carbon cloth. The same treatments have been conducted over a granular activated carbon in order to clarify the effect of morphology. The influence of different electrochemical variables, such as the electrode polarity (anodic or cathodic), the applied current (between 0.2 and 1.0 A) and the type of electrolyte (HNO3 and NaCl) have also been analyzed. The anodic treatment of both activated carbons causes an increase in the amount of surface oxygen groups, whereas the cathodic treatment does not produce any relevant modification of the surface chemistry. The HNO3 electrolyte produced a lower generation of oxygen groups than the NaCl one, but differences in the achieved distribution of surface groups can be benefitial to selectively tune the surface chemistry. The porous texture seems to be unaltered after the electro-oxidation treatment. The validity of this method to introduce surface oxygen groups with a pseudocapacitive behavior has been corroborated by cyclic voltammetry. As a conclusion, the electrochemical treatment can be easily implemented to selectively and quantitatively modify the surface chemistry of activated carbons with different shapes and morphologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ferrocene-lipid film electrode was successfully prepared by means of casting the solution of ferrocene and lipid in chloroform onto a glassy carbon (GC) electrode surface. Ferrocene saved in the biological membrane gave a couple of quasi-reversible peaks of cyclic voltammogram. The electrode displays a preferential electrocatalytic oxidation of dopamine (DA). The effect of electroccatalytic oxidation of DA depends on the solution pH and the negative charge lipid is in favor of catalytic oxidation of DA. The characteristic was employed for separating the electrochemical responses of DA and ascorbic acid (AA). The electrode was assessed for the voltammetric differentiation of DA and AA. The measurement of DA can be achieved with differential pulse voltammetry in the, presence of high concentration of AA. The catalytic peak current was proportional to the concentration of DA in the range of 1 x 10(-4)-3 x 10(-3) mol/L.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electro-oxidation of PtCl42- was studied on a glassy carbon (GC) electrode. A Pt(IV) complex was formed on the electrode surface through coordination to the oxygen atom of an oxide functional group on the electrode, which results in its deactivation. The ferri/ferrocyanide redox couple was used as a probe to examine the activity of the GC electrode. X-ray photoelectron spectroscopy was employed to characterize the platinum on the electrode surface, and showed that the oxidation state of the Pt element changes depending on the electrochemical treatment of GC electrode. The platinum complex on the surface of the GC electrode can be transformed to Pt-0 by cycling the electrode between -0.25 and +1.65 V/SCE in 0.1 M H2SO4 solution. The above procedure can be used to disperse platinum ultramicroparticles on the surface of a GC electrode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O tratamento físico-químico de águas residuais, de origem industrial, mais comum é o tratamento baseado na adição de coagulante e floculante a um efluente. No entanto, o tratamento eletroquímico é um tipo de tratamento que tem vindo a ser explorado e estudado com mais ênfase ao longo dos últimos anos. O tratamento eletroquímico é uma tecnologia AOP (Processos de Oxidação Avançada) e divide-se em eletrólise direta (oxidação e redução) e indireta (eletrocoagulação-flotação e eletrooxidação). A eletrocoagulação e eletrooxidação divergem apenas pelo tipo de reações que ocorrem, devido ao material que constitui os elétrodos. São processos complexos com uma multiplicidade de mecanismos que operam sinergicamente para remover poluentes da água. Tendo em conta a sua complexidade e ainda dificuldade de compreensão, existem na literatura diferentes versões acerca de quais os mecanismos chave, assim como diversas configurações geométricas de reatores e elétrodos. Atualmente, este tipo de tratamento tem vindo a evoluir, tornando-se num método economicamente viável para o tratamento de uma grande variedade de águas residuais, nomeadamente, aquelas que possuem compostos recalcitrantes na sua composição. O presente trabalho foi realizado nas instalações da VentilAQUA S.A. e, tendo em conta a sua área de especialidade, o trabalho exposto focou-se no desenvolvimento de soluções técnicas de AOP, nomeadamente na área eletroquímica (eletrocoagulação e eletrooxidação),para estudo dos parâmetros operacionais numa nova configuração geométrica para os elétrodos. Tendo por base os contributos da revisão bibliográfica, o estudo incidiu num reator tubular, com elétrodos de inox dispostos de forma concêntrica, à mesma distância entre si. Com este reator foram executados variados testes, com diferentes efluentes, que permitiram obter resultados operacionais de otimização de funcionamento, tendo em vista a remoção de poluentes. O estudo financeiro associado permitiu concluir que a eletrooxidação é significativamente mais económica que o tratamento físico-químico, nas condições operacionais e para os efluentes tratados. Relativamente ao Acompanhamento e Gestão de ETAR’s (Capítulo 4) foi possível verificar que todos os casos em estudo apresentam uma boa eficiência de remoção de matéria orgânica, permitindo a descarga do seu efluente com uma carga poluente que cumpre com os requisitos legais de descarga em meio hídrico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of water has become one of the most important wastes in the petroleum industry, specifically in the up stream segment. The treatment of this kind of effluents is complex and normally requires high costs. In this context, the electrochemical treatment emerges as an alternative methodology for treating the wastewaters. It employs electrochemical reactions to increase the capability and efficiency of the traditional chemical treatments for associated produced water. The use of electrochemical reactors can be effective with small changes in traditional treatments, generally not representing a significant additional surface area for new equipments (due to the high cost of square meter on offshore platforms) and also it can use almost the same equipments, in continuous or batch flow, without others high costs investments. Electrochemical treatment causes low environmental impact, because the process uses electrons as reagent and generates small amount of wastes. In this work, it was studied two types of electrochemical reactors: eletroflocculation and eletroflotation, with the aim of removing of Cu2+, Zn2+, phenol and BTEX mixture of produced water. In eletroflocculation, an electrical potential was applied to an aqueous solution containing NaCl. For this, it was used iron electrodes, which promote the dissolution of metal ions, generating Fe2+ and gases which, in appropriate pH, promote also clotting-flocculation reactions, removing Cu2+ and Zn2+. In eletroflotation, a carbon steel cathode and a DSA type anode (Ti/TiO2-RuO2-SnO2) were used in a NaCl solution. It was applied an electrical current, producing strong oxidant agents as Cl2 and HOCl, increasing the degradation rate of BTEX and phenol. Under different flow rates, the Zn2+ was removed by electrodeposition or by ZnOH formation, due the increasing of pH during the reaction. To better understand the electrochemical process, a statistical protocol factor (22) with central point was conducted to analyze the sensitivity of operating parameters on removing Zn2+ by eletroflotation, confirming that the current density affected the process negatively and the flow rate positively. For economical viability of these two electrochemical treatments, the energy consumption was calculated, taking in account the kWh given by ANEEL. The treatment cost obtained were quite attractive in comparison with the current treatments used in Rio Grande do Norte state. In addition, it could still be reduced for the case of using other alternative energy source such as solar, wind or gas generated directly from the Petrochemical Plant or offshore platforms

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, electrochemical technology was used to treat synthetic wastewater containing Methyl Red (MR) and Blue Novacron (BN) by anodic oxidation using anodes platinum (Pt) and real samples of textile effluents using DDB anodes and platinum (Pt). The removal of color from the galvanostatic electrolysis of synthetic wastewater MR and BN, and the actual sample has been observed under different conditions (different current densities and temperature variation). The investigation of these parameters was performed in order to establish the best conditions for removal of color and chemical oxygen demand (BOD). According to the results obtained in this study, the electrochemical oxidation processes suitable for the degradation process of color and COD in wastewater containing such textile dyes, because the electrocatalytic properties of Pt and BDD anodes consumption energy during the electrochemical oxidation of synthetic solutions AN and MR and real sample, mainly depend on the operating parameters of operation, for example, the synthetic sample of MR, energy consumption rose from 42,00kWhm-3 in 40 mAcm-2 and 25 C to 17,50 kWhm-3 in 40mAcm-2 and 40 C, from the BN went 17,83 kWhm-3 in 40mAcm and 40°C to 14,04 kWhm- 3 in 40mAcm-2 and 40 C (data estimated by the volume of treated effluent). These results clearly indicate the applicability of electrochemical treatment for removing dyes from synthetic solutions and real industrial effluents