997 resultados para Electrochemical reactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical reactions of cyanocobalamin, CN-Cbl[Co(III)], were studied at glassy carbon electrodes in acidic media by means of cyclic voltammetry and differential pulse polarography. It was found that in pH 0 solution, CN-Cbl[Co(III)] exists mainly in the base-off form, {CN-Cbl[Co(III)]}(base-off). It can undergo a one-electron reduction and a follow-up chemical reaction to form {H2O-Cbl[Co(II)]}(base-off). The rate-constant k of the follow-up decyanation reaction is 0.022 s(-1). {H2O-Cbl[Co(II)]}(base-off) is further reduced to obtain H2O-Cbl[Co(I)]. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quasi-reversible and direct electron transfer was observed between an iodide-modified Au electrode and cytochrome c, as well as between cytochrome c in an iodide-containing solution and a bare Au electrode. The results suggest that an electrostatic intera

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full validation of the electrochemical mechanisms so far postulated as driving force of electric field-assisted non-spontaneous crystallization development in given glasses has suffered experimental restrictions. In this work, we looked into origin of this phenomenon in lead oxyfluoroborate glasses, resulting in beta-PbF2 growth even below the corresponding glass transition temperatures, through achieving a systematic study of not only Pt,Ag/Glass/Ag,Pt- but also Pt,Ag/Glass/YSZ:PbF2/Ag,Pt-type cells, where YSZ:PbF2 represents a two-phase system (formed by Y2O3-doped ZrO2 and PbF2). It is demonstrated that crystallization induction in these glasses involves Pb2+ ions reduction at the cathode, the phenomenon being, however, confirmed only when the F- ions were simultaneously also able to reach the anode for oxidation, after assuring either a direct glass-anode contact or percolation pathways for free fluoride migration across the YSZ:PbF2 mixtures. A further support of this account is that the electrochemically induced beta-PbF2 phase crystallizes showing ramified-like microstructure morphology that arises, accordingly, from development of electroconvective diffusion processes under electric field action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical reactions of dopamine, catechol and methylcatechol were investigated at tetrahedral amorphous carbon (ta-C) thin film electrodes. In order to better understand the reaction mechanisms of these molecules, cyclic voltammetry with varying scan rates was carried out at different pH values in H2SO4 and PBS solutions. The results were compared to the same redox reactions taking place at glassy carbon (GC) electrodes. All three catechols exhibited quasi-reversible behavior with sluggish electron transfer kinetics at the ta-C electrode. At neutral and alkaline pH, rapid coupled homogeneous reactions followed the oxidation of the catechols to the corresponding o-quinones and led to significant deterioration of the electrode response. At acidic pH, the extent of deterioration was considerably lower. All the redox reactions showed significantly faster electron transfer kinetics at the GC electrode and it was less susceptible toward surface passivation. An EC mechanism was observed for the oxidation of dopamine at both ta-C and GC electrodes and the formation of polydopamine was suspected to cause the passivation of the electrodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium carbide (TiC) is an electrically conducting refractory interstitial compound possessing several unique properties. A cost-effective, efficient and non-Pt electrocatalyst based on TiC is explored and the multi-functionality of TiC towards various electrochemical reactions that are of significant interest in low temperature fuel cells is studied. Ameliorated activities towards oxygen reduction reaction (ORR) and borohydride oxidation are observed with TiC-carbon composites. High sensitivity and selectivity towards ORR have been demonstrated with very good methanol tolerance. The charge transfer interactions between TiC and carbon seem to play a vital role in the improved activity as compared to their individual counterparts. The present study opens up a way to realize completely Pt-free borohydride fuel cell architecture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionic liquids (ILs) represent a fascinating, and yet to be fully understood, medium for a variety of chemical, physical and biological processes. Electrochemical processes form an important subset of these that are particularly of interest, since ILs tend to be good electrochemical solvents and exhibit other properties which make them very useful as electrolytes in electrochemical devices. It is important therefore to understand the extent to which electrochemical reactions and processes behave in a relatively “normal”, for example aqueous solution, fashion as opposed to exhibiting phenomena more uniquely the product of their organic ionic nature. This perspective examines a range of electrochemical reactions in ionic liquids, in many cases in the context of real world applications, to highlight the phenomena as far as they are understood and where data gaps exist. The important areas of lithium and conducting polymer electrochemistry are discussed in detail.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study reports a multinuclei in situ (real-time) NMR spectroscopic characterization of the electrochemical reactions of a negative Cu3P electrode toward lithium. Taking advantage of the different nuclear spin characteristics, we have obtained real-time P-31 and Li-7 NMR data for a comprehensive understanding of the electrochemical mechanism during the discharge and charge processes of a lithium battery. The large NMR chemical shift span of P-31 facilitates the observation of the chemical evolutions of different lithiated and delithiated LixCu3-xP phases, whereas the quadrupolar line features in Li-7 enable identification of asymmetric Li sites. These combined NMR data offer an unambiguous identification of four distinct LixCu3-xP phases, Cu3P, Li0.2Cu2.8P, Li2CuP, and. Li3P, and the characterization of their involvement in the electrochemical reactions. The NMR data led us to propose a delithiation process involving the intercalation of metallic Cu-0 atomic aggregates into the Li2CuP structure to form a Cu-0-Li2-xCu1-xP phase. This process might be responsible for the poor capacity retention in Cu3P lithium batteries when cycled to a low voltage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cold-worked austenitic stainless steels have been subject to a pulsed electrochemical treatment in fairly concentrated aqueous solutions of sodium nitrite. The electrochemical reactions that occur transform the strain-induced martensite phase, originally formed by the cold work, back to the austenite phase. However, unlike the conventional thermal annealing process, electrochemically induced surface annealing also hardens the surface of the alloy. Because the process causes transformation of the surface martensite, we term it "electrochemical surface annealing", despite the fact that it results in an increase in surface hardness.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Cu-Zr amorphous alloy was studied as an electrocatalyst towards the electrochemical hydrogenation of nitrobenzene. The electrocatalyst was activated by chemical etching in HF solution. Resulted changes in the morphology, chemical composition and crystalline structure of the electrocatalyst surface were characterised by scanning electron microscopy, X-ray diffraction and Auger electron spectroscopy. The electrocatalytic properties of the Cu-Zr amorphous alloy were assessed by voltammetric measurements. Due to the formation and aggregation of Zr residue modified Cu nanocrystals on the surface caused by the selective dissolution of Zr components in the chemical etching, the activated amorphous alloy is an effective electrocatalyst for the electrochemical reduction reaction of nitrobenzene with aniline as the main product. The positive shift of the peak potential and accompanying increase in the value of peak current in voltammograms with increasing Cu content and decreasing Zr content of the alloy surface in the chemical etching are indicative of improved electrocatalytic activity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has been reported for the first time that an electrochemical gas sensor mdified with multi-walled carbon nanotubes (MWNTs) film as elctrocatalyst was fabricated for the determination of chlorine (Cl-2).Here, MWNTs and graphite were compared with each other in terms of their electrochemical properties using cyclic voltammetry. Cl-2 gas was allowed through the cathode surface of the sensor and the resulting galvanic effects were monitored. Results indicated that both of the MWNTs and graphite have the electrocatalytic activity for the reduction of Cl-2 while the MWNTs-modified electrode exhibited a higher accessible surface area in electrochemical reactions, excellent sensitivity, stable response, reproducibility and recovery for the determination of Cl-2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrochemical reactions of cytochrome c were studied at a thiophene-modified gold electrode. It was demonstrated that thiophene is an effective promoter, although there is only one functional group in the molecule. Based on this result, the mechanis

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrochemical behavior of Alizarin Red S(ARS) on GC electrode has been studied in acidic condition by spectroelectrochemistry with LOPTLC. It was found that there are three electrochemical reactions and followed by a chemical reaction of ARS in the potential range of 1.00——0.60V. The mechanism of electrode reactions has been studied and suggested based on the informations obtained from electrochemical and insitu spectroelectrochemical experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.