144 resultados para Electrocatalysis
Resumo:
A new tetraruthenated copper(II)-tetra(3,4-pyridyl)porphyrazine species, [CuTRPyPz]4+, has been synthesized and fully characterized by means of analytical, spectroscopic and electrochemical techniques. This À-conjugated system contrasts with the related meso-tetrapyridylporphyrins by exhibiting strong electronic interaction between the coordinated peripheral complexes and the central ring. Based on favorable À-stacking and electrostatic interactions, layer-by-layer assembled films were successfully generated from the appropriate combination of [CuTRPyPz]4+ with copper(II)-tetrasulfonated phtalocyanine, [CuTSPc]4-. Their conducting and electrocatalytic properties were investigated by means of impedance spectroscopy and rotating disc voltammetry, exhibiting metallic behavior near the Ru(III/II) redox potential, as well as enhanced catalytic activity for the oxidation of nitrite and sulphite ions.
Resumo:
This article deals with electrocatalysis and electrocatalysts for low temperature fuel cells and also with established means and methods in electrocatalyst research, development and characterization. The intention is to inform about the fundamentals, state of the art, research and development of noble metal electrocatalysts for fuel cells operating at low temperatures.
Resumo:
Over 50 years, several scientists and industries have developed new alternatives for wastewater treatment and remediation. Recently, electrochemical technology has been largely developed mainly because of its versatility and environmental compatibility. Scientific contributions about role of the electrode material have allowed determining that the influence of material in the selectivity is an important parameter. However, to interpret this behavior, comprehensive physical chemistry models for organics destruction, related to electrochemical phenomena and material surfaces, were proposed in the last decades. So, this paper presents a critical and comprehensive review about the principles and recent mechanism advances in electrocatalysis for wastewater treatment.
Resumo:
The oxygen reduction reaction (ORR) was investigated on carbon-supported Pt-Co nanoparticle electrocatalysts with low Pt content in alkaline electrolyte. High resolution transmission electron microscopy, In situ X-ray absorption spectroscopy, and X-ray diffraction analysis evidenced large structural differences of the Pt-Co particles depending oil the route of the catalyst synthesis. It was demonstrated that although the Pt-Co materials contain low amounts of Pt, they show very good activities when the particles are formed by a Pt-rich shell and a Pt-Co core, which was obtained after submitting the electrocatalyst to a potential cycling in acid electrolyte. The high activity of this material was due to a major contribution from its higher surface area, as a result of the leaching of the Co atoms from the particle Surface. Furthermore, its high activity was ascribed to a minor contribution from the electronic interaction of the Pt atoms, at the particle surface, and the Co atoms located in the beneath layer, lowering the Pt cl-band center. As these electrocatalysts presented high activity for the ORR with low Pt content, the cost of the fuel cell cathodes could be lowered considerably. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Pt monolayers deposited on carbon- supported Ru and Rh nanoparticles were investigated as electrocatalysts for ethanol oxidation. Electronic features of the Pt monolayers were studied by in situ XANES (X-ray absorption near-edge structure). The electrochemical activity was investigated by cyclic voltammetry and cronoamperometric experiments. Spectroscopic and electrochemical results were compared to those obtained on carbon-supported Pt-Ru and Pt-Rh alloys, and Pt E-TEK. XAS results indicate a modification of the Pt 5d band due to geometric and electronic interactions with the Ru ant Rh substrates, but the effect of withdrawing electrons from Pt is less pronounced in relation to that for the corresponding alloys. Electrochemical stripping of adsorbed CO, which is one of the intermediates, and the currents for the oxidation of ethanol show faster kinetics on the Pt monolayer deposited on Ru nanoparticles, and an activity that exceeds that of conventional catalysts with much larger amounts of platinum. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, a simple route to prepare carbon supported Pt/C, Pt:Ru/C, Pt:Mo/C and Pt:Ru:Mo/C catalysts is reported. The electrochemical properties of the several carbon materials used as substrates in the absence and in the presence of supported platinum and platinum alloys catalysts were investigated using cyclic voltammetry and employing the thin porous coating electrode technique. The activity of the dispersed catalysts composed of Pt/C with respect to the oxygen reduction and of alloy/C with respect to methanol oxidation was investigated using steady state polarization measurements. The performance with respect to the oxygen reduction reaction of the Pt/C catalyst prepared on heat-treated Vulcan carbon substrate is equivalent to that reported in the literature for the state-of-the-art electrocatysts. Pt:Ru:Mo/C samples prepared in this work presented the higher catalytic effect for methanol electro-oxidation.
Resumo:
An experimentally based kinetic and mechanistic study of the hydrogen oxidation reaction (HOR) on platinum and platinum ordered intermetallic materials in acid medium is presented. RDE kinetic data were re-evaluated and complemented by Tafel plots obtained from chronoamperometric measurements. Among the materials evaluated, PtSb and PtSn exhibited markedly improved kinetic current densities and exchange current densities, compared to Pt in the same experimental conditions. It is proposed that the intermetallic phase enhanced the adsorptive characteristic of the surface sites and, as a consequence, improved the kinetics of the adsorption steps (Tafel or Heyrovsky) of the mechanism involved. (c) 2006 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Kinetic studies of hydrogen evolution reaction (HER) at the surface of Pt in alkaline conditions, reported in this paper, show that electrocatalytic activity is enhanced after adsorption of S-2 ions. EIS and steady-state polarization curve data pointed to an undoubted improvement in performance with the Pt-S cathode that was attributed to higher adsorbed hydrogen coverage. Experimental findings suggested an increase in the electronic density of the modified surface sites that may strengthen the interaction between H2O and the adsorption site and, consequently, accelerates the Volmer step. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Using density functional theory and a model developed in our own group, we have investigated the suitability of three intermetallic compounds - AuSn, PdSn, and PtSn - as electrode materials for hydrogen oxidation in fuel cells, focusing on their CO tolerance and their catalytic properties. All three metals were found to have lower susceptibility to be poisoned by CO compared to platinum, but only PtSn promises to be a good catalyst for hydrogen oxidation. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Most of electrocatalytic reactions occur in an aqueous environment. Understanding the influence of water structure on reaction dynamics is fundamental in electrocatalysis. In this work, the role of liquid water structure on the oxygen reduction at Pt(1 1 1) electrode is analyzed in methanesulfonic (MTSA) and perchloric acids. This is because these different anions can exert a different influence on liquid water structure. Results reveal a lower ORR electrode activity in MTSA than in HClO4 solutions and they are discussed in light of anion's influence on water structural ordering. From them, the existence of an outer-sphere, rate determining, step in the ORR mechanism is suggested.