898 resultados para Electricity Price Volatility


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy prices are highly volatile and often feature unexpected spikes. It is the aim of this paper to examine whether the occurrence of these extreme price events displays any regularities that can be captured using an econometric model. Here we treat these price events as point processes and apply Hawkes and Poisson autoregressive models to model the dynamics in the intensity of this process.We use load and meteorological information to model the time variation in the intensity of the process. The models are applied to data from the Australian wholesale electricity market, and a forecasting exercise illustrates both the usefulness of these models and their limitations when attempting to forecast the occurrence of extreme price events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to develop a demand-side-response model, which assists electricity consumers exposed to the market price to independently and proactively manage air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimize the energy cost caused by the air conditioning load considering to several cases e.g. normal price, spike price, and the probability of a price spike case. This model also investigated how air-conditioning applies a pre-cooling method when there is a substantial risk of a price spike. The results indicate the potential of the scheme to achieve financial benefits for consumers and target the best economic performance for electrical generation distribution and transmission. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics regarding hot days from 2011 to 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent years have seen global food prices rise and become more volatile. Price surges in 2008 and 2011 held devastating consequences for hundreds of millions of people and negatively impacted many more. Today one billion people are hungry. The issue is a high priority for many international agencies and national governments. At the Cannes Summit in November 2011, the G20 leaders agreed to implement five objectives aiming to mitigate food price volatility and protect vulnerable persons. To succeed, the global community must now translate these high level policy objectives into practical actions. In this paper, we describe challenges and unresolved dilemmas before the global community in implementing these five objectives. The paper describes recent food price volatility trends and an evaluation of possible causes. Special attention is given to climate change and water scarcity, which have the potential to impact food prices to a much greater extent in coming decades. We conclude the world needs an improved knowledge base and new analytical capabilities, developed in parallel with the implementation of practical policy actions, to manage food price volatility and reduce hunger and malnutrition. This requires major innovations and paradigm shifts by the global community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormally high price spikes in spot electricity markets represent a significant risk to market participants. As such, a literature has developed that focuses on forecasting the probability of such spike events, moving beyond simply forecasting the level of price. Many univariate time series models have been proposed to dealwith spikes within an individual market region. This paper is the first to develop a multivariate self-exciting point process model for dealing with price spikes across connected regions in the Australian National Electricity Market. The importance of the physical infrastructure connecting the regions on the transmission of spikes is examined. It is found that spikes are transmitted between the regions, and the size of spikes is influenced by the available transmission capacity. It is also found that improved risk estimates are obtained when inter-regional linkages are taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Union Emissions Trading Scheme (EU ETS) is a cornerstone of the European Union's policy to combat climate change and its key tool for reducing industrial greenhouse gas emissions cost-effectively. The purpose of the present work is to evaluate the influence of CO2 opportunity cost on the Spanish wholesale electricity price. Our sample includes all Phase II of the EU ETS and the first year of Phase III implementation, from January 2008 to December 2013. A vector error correction model (VECM) is applied to estimate not only long-run equilibrium relations, but also short-run interactions between the electricity price and the fuel (natural gas and coal) and carbon prices. The four commodities prices are modeled as joint endogenous variables with air temperature and renewable energy as exogenous variables. We found a long-run relationship (cointegration) between electricity price, carbon price, and fuel prices. By estimating the dynamic pass-through of carbon price into electricity price for different periods of our sample, it is possible to observe the weakening of the link between carbon and electricity prices as a result from the collapse on CO2 prices, therefore compromising the efficacy of the system to reach proposed environmental goals. This conclusion is in line with the need to shape new policies within the framework of the EU ETS that prevent excessive low prices for carbon over extended periods of time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the impact of the energy upon electricity markets using Multidimensional Scaling (MDS). Data from major energy and electricity markets is considered. Several maps produced by MDS are presented and discussed revealing that this method is useful for understanding the correlation between them. Furthermore, the results help electricity markets agents hedging against Market Clearing Price (MCP) volatility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employ a large dataset of physical inventory data on 21 different commodities for the period 1993–2011 to empirically analyze the behavior of commodity prices and their volatility as predicted by the theory of storage. We examine two main issues. First, we analyze the relationship between inventory and the shape of the forward curve. Low (high) inventory is associated with forward curves in backwardation (contango), as the theory of storage predicts. Second, we show that price volatility is a decreasing function of inventory for the majority of commodities in our sample. This effect is more pronounced in backwardated markets. Our findings are robust with respect to alternative inventory measures and over the recent commodity price boom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2007 futures contracts were introduced based upon the listed real estate market in Europe. Following their launch they have received increasing attention from property investors, however, few studies have considered the impact their introduction has had. This study considers two key elements. Firstly, a traditional Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, the approach of Bessembinder & Seguin (1992) and the Gray’s (1996) Markov-switching-GARCH model are used to examine the impact of futures trading on the European real estate securities market. The results show that futures trading did not destabilize the underlying listed market. Importantly, the results also reveal that the introduction of a futures market has improved the speed and quality of information flowing to the spot market. Secondly, we assess the hedging effectiveness of the contracts using two alternative strategies (naïve and Ordinary Least Squares models). The empirical results also show that the contracts are effective hedging instruments, leading to a reduction in risk of 64 %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity price forecasting is an interesting problem for all the agents involved in electricity market operation. For instance, every profit maximisation strategy is based on the computation of accurate one-day-ahead forecasts, which is why electricity price forecasting has been a growing field of research in recent years. In addition, the increasing concern about environmental issues has led to a high penetration of renewable energies, particularly wind. In some European countries such as Spain, Germany and Denmark, renewable energy is having a deep impact on the local power markets. In this paper, we propose an optimal model from the perspective of forecasting accuracy, and it consists of a combination of several univariate and multivariate time series methods that account for the amount of energy produced with clean energies, particularly wind and hydro, which are the most relevant renewable energy sources in the Iberian Market. This market is used to illustrate the proposed methodology, as it is one of those markets in which wind power production is more relevant in terms of its percentage of the total demand, but of course our method can be applied to any other liberalised power market. As far as our contribution is concerned, first, the methodology proposed by García-Martos et al(2007 and 2012) is generalised twofold: we allow the incorporation of wind power production and hydro reservoirs, and we do not impose the restriction of using the same model for 24h. A computational experiment and a Design of Experiments (DOE) are performed for this purpose. Then, for those hours in which there are two or more models without statistically significant differences in terms of their forecasting accuracy, a combination of forecasts is proposed by weighting the best models(according to the DOE) and minimising the Mean Absolute Percentage Error (MAPE). The MAPE is the most popular accuracy metric for comparing electricity price forecasting models. We construct the combi nation of forecasts by solving several nonlinear optimisation problems that allow computation of the optimal weights for building the combination of forecasts. The results are obtained by a large computational experiment that entails calculating out-of-sample forecasts for every hour in every day in the period from January 2007 to Decem ber 2009. In addition, to reinforce the value of our methodology, we compare our results with those that appear in recent published works in the field. This comparison shows the superiority of our methodology in terms of forecasting accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of undesirable electricity price spikes in a competitive electricity market requires an efficient auction mechanism. However, many of the existing auction mechanism have difficulties in suppressing such unreasonable price spikes effectively. A new auction mechanism is proposed to suppress effectively unreasonable price spikes in a competitive electricity market. It optimally combines system marginal price auction and pay as bid auction mechanisms. A threshold value is determined to activate the switching between the marginal price auction and the proposed composite auction. Basically when the system marginal price is higher than the threshold value, the composite auction for high price electricity market is activated. The winning electricity sellers will sell their electricity at the system marginal price or their own bid prices, depending on their rights of being paid at the system marginal price and their offers' impact on suppressing undesirable price spikes. Such economic stimuli discourage sellers from practising economic and physical withholdings. Multiple price caps are proposed to regulate strong market power. We also compare other auction mechanisms to highlight the characteristics of the proposed one. Numerical simulation using the proposed auction mechanism is given to illustrate the procedure of this new auction mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy price is related to more than half of the total life cycle cost of asphalt pavements. Furthermore, the fluctuation related to price of energy has been much higher than the general inflation and interest rate. This makes the energy price inflation an important variable that should be addressed when performing life cycle cost (LCC) studies re- garding asphalt pavements. The present value of future costs is highly sensitive to the selected discount rate. Therefore, the choice of the discount rate is the most critical element in LCC analysis during the life time of a project. The objective of the paper is to present a discount rate for asphalt pavement projects as a function of interest rate, general inflation and energy price inflation. The discount rate is defined based on the portion of the energy related costs during the life time of the pavement. Consequently, it can reflect the financial risks related to the energy price in asphalt pavement projects. It is suggested that a discount rate sensitivity analysis for asphalt pavements in Sweden should range between –20 and 30%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tanulmány arra keresi a választ, hogy a megújuló alapú áramtermelők támogatása csökkentőleg hathat- e a villamos energia nagykereskedelmi és kiskereskedelmi árára. Ez utóbbi tartalmazza a megújulók támogatásának összegét is. Számos elméleti cikk rámutatott arra, hogy nemcsak a nagykereskedelmi árak, hanem a kiskereskedelmi villamosenergia-árak is csökkenhetnek a drágább, megújuló alapú áramtermelők támogatása révén. A tanulmány során egy villamosenergia-piacokat szimuláló modell segítségével modellezi a szerző, hogy a különböző mennyiségű szélerőművi és fotovoltaikus kapacitás támogatása hogyan hat a magyarországi nagykereskedelmi és kiskereskedelmi árakra. _____ Impact of the Hungarian renewable based power generation on electricity price The aim of this paper is to answer the question whether the support of renewable power generation could decrease the wholesale and retail electricity prices. The latter one includes the support of renewables. Several studies point out that not only the wholesale, but the retail electricity prices could decrease when supporting the more expensive, renewable power generation. A model, which simulates the electricity markets, is used in order to analyse the impact of different level of wind and photo voltaic power generator support fee on Hungarian wholesale and retail electricity prices.