953 resultados para Electrical power supply
Resumo:
The growing demand for electrical power and the limited capital invested to provide this power is forcing countries like Brazil to search for new alternatives for electrical power generation. The purpose of this paper is to present a technical and economic study on a 15 kW solar plant installed in an isolated community, highlighting the importance of the need for financial subsidy from the government. It evaluates the importance of parameters such as the annual interest rate, specific investment, the marginal cost of expanding the electrical power supply and the government subsidy on amortization time of capital invested. © 2012 Elsevier Ltd All rights reserved.
Resumo:
In competitive electricity markets with deep concerns for the efficiency level, demand response programs gain considerable significance. As demand response levels have decreased after the introduction of competition in the power industry, new approaches are required to take full advantage of demand response opportunities. This paper presents DemSi, a demand response simulator that allows studying demand response actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. The use of DemSi by a retailer in a situation of energy shortage, is presented. Load reduction is obtained using a consumer based price elasticity approach supported by real time pricing. Non-linear programming is used to maximize the retailer’s profit, determining the optimal solution for each envisaged load reduction. The solution determines the price variations considering two different approaches, price variations determined for each individual consumer or for each consumer type, allowing to prove that the approach used does not significantly influence the retailer’s profit. The paper presents a case study in a 33 bus distribution network with 5 distinct consumer types. The obtained results and conclusions show the adequacy of the used methodology and its importance for supporting retailers’ decision making.
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.
Resumo:
The Fast Field-Cycling Nuclear Magnetic Resonance (FFC-NMR) is a technique used to study the molecular dynamics of different types of materials. The main elements of this equipment are a magnet and its power supply. The magnet used as reference in this work is basically a ferromagnetic core with two sets of coils and an air-gap where the materials' sample is placed. The power supply should supply the magnet being the magnet current controlled in order to perform cycles. One of the technical issues of this type of solution is the compensation of the non-linearities associated to the magnetic characteristic of the magnet and to parasitic magnetic fields. To overcome this problem, this paper describes and discusses a solution for the FFC-NMR power supply based on a four quadrant DC/DC converter.
Resumo:
An energy harvesting system requires an energy storing device to store the energy retrieved from the surrounding environment. This can either be a rechargeable battery or a supercapcitor. Due to the limited lifetime of rechargeable batteries, they need to be periodically replaced. Therefore, a supercapacitor, which has ideally a limitless number of charge/discharge cycles can be used to store the energy; however, a voltage regulator is required to obtain a constant output voltage as the supercapacitor discharges. This can be implemented by a Switched-Capacitor DC-DC converter which allows a complete integration in CMOS technology, although it requires several topologies in order to obtain a high efficiency. This thesis presents the complete analysis of four different topologies in order to determine expressions that allow to design and determine the optimum input voltage ranges for each topology. To better understand the parasitic effects, the implementation of the capacitors and the non-ideal effect of the switches, in 130 nm technology, were carefully studied. With these two analysis a multi-ratio SC DC-DC converter was designed with an output power of 2 mW, maximum efficiency of 77%, and a maximum output ripple, in the steady state, of 23 mV; for an input voltage swing of 2.3 V to 0.85 V. This proposed converter has four operation states that perform the conversion ratios of 1/2, 2/3, 1/1 and 3/2 and its clock frequency is automatically adjusted to produce a stable output voltage of 1 V. These features are implemented through two distinct controller circuits that use asynchronous time machines (ASM) to dynamically adjust the clock frequency and to select the active state of the converter. All the theoretical expressions as well as the behaviour of the whole system was verified using electrical simulations.
Resumo:
In this paper, implementation and testing of non- commercial GaN HEMT in a simple buck converter for envelope amplifier in ET and EER transmission techn iques has been done. Comparing to the prototypes with commercially available EPC1014 and 1015 GaN HEMTs, experimentally demonstrated power supply provided better thermal management and increased the switching frequency up to 25MHz. 64QAM signal with 1MHz of large signal bandw idth and 10.5dB of Peak to Average Power Ratio was gener ated, using the switching frequency of 20MHz. The obtaine defficiency was 38% including the driving circuit an d the total losses breakdown showed that switching power losses in the HEMT are the dominant ones. In addition to this, some basic physical modeling has been done, in order to provide an insight on the correlation between the electrical characteristics of the GaN HEMT and physical design parameters. This is the first step in the optimization of the HEMT design for this particular application.
Resumo:
This thesis deals with the sizing and analysis of the electrical power system of a petrochemical plant. The activity was carried out in the framework of an electrical engineering internship. The sizing and electrical calculations, as well as the study of the dynamic behavior of network quantities, are accomplished by using the ETAP (Electrical Transient Analyzer Program) software. After determining the type and size of the loads, the calculation of power flows is carried out for all possible network layout and different power supply configurations. The network is normally operated in a double radial configuration. However, the sizing must be carried out taking into account the most critical configuration, i.e., the temporary one of single radial operation, and also considering the most unfavorable power supply conditions. The calculation of shortcircuit currents is then carried out and the appropriate circuit breakers are selected. Where necessary, capacitor banks are sized in order to keep power factor at the point of common coupling within the preset limits. The grounding system is sized by using the finite element method. For loads with the highest level of criticality, UPS are sized in order to ensure their operation even in the absence of the main power supply. The main faults that can occur in the plant are examined, determining the intervention times of the protections to ensure that, in case of failure on one component, the others can still properly operate. The report concludes with the dynamic and stability analysis of the power system during island operation, in order to ensure that the two gas turbines are able to support the load even during transient conditions.
Resumo:
We describe the design and implementation of a high voltage pulse power supply (pulser) that supports the operation of a repetitively pulsed filtered vacuum arc plasma deposition facility in plasma immersion ion implantation and deposition (Mepiiid) mode. Negative pulses (micropulses) of up to 20 kV in magnitude and 20 A peak current are provided in gated pulse packets (macropulses) over a broad range of possible pulse width and duty cycle. Application of the system consisting of filtered vacuum arc and high voltage pulser is demonstrated by forming diamond-like carbon (DLC) thin films with and without substrate bias provided by the pulser. Significantly enhanced film/substrate adhesion is observed when the pulser is used to induce interface mixing between the DLC film and the underlying Si substrate. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518969]
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
The report presents a grammar capable of analyzing the process of production of electricity in modular elements for different power-supply systems, defined using semantic and formal categories. In this way it becomes possible to individuate similarities and differences in the process of production of electricity, and then measure and compare “apples” with “apples” and “oranges” with “oranges”. For instance, when comparing the various unit operations of the process of production of electricity with nuclear energy to the analogous unit operations of the process of production of fossil energy, we see that the various phases of the process are the same. The only difference is related to characteristics of the process associated with the generation of heat which are completely different in the two systems. As a matter of facts, the performance of the production of electricity from nuclear energy can be studied, by comparing the biophysical costs associated with the different unit operations taking place in nuclear and fossil power plants when generating process heat or net electricity. By adopting this approach, it becomes possible to compare the performance of the two power-supply systems by comparing their relative biophysical requirements for the phases that both nuclear energy power plants and fossil energy power plants have in common: (i) mining; (ii) refining/enriching; (iii) generating heat/electricity; (iv) handling the pollution/radioactive wastes. This report presents the evaluation of the biophysical requirements for the two powersupply systems: nuclear energy and fossil energy. In particular, the report focuses on the following requirements: (i) electricity; (ii) fossil-fuels, (iii) labor; and (iv) materials.
Resumo:
Fault location has been studied deeply for transmission lines due to its importance in power systems. Nowadays the problem of fault location on distribution systems is receiving special attention mainly because of the power quality regulations. In this context, this paper presents an application software developed in Matlabtrade that automatically calculates the location of a fault in a distribution power system, starting from voltages and currents measured at the line terminal and the model of the distribution power system data. The application is based on a N-ary tree structure, which is suitable to be used in this application due to the highly branched and the non- homogeneity nature of the distribution systems, and has been developed for single-phase, two-phase, two-phase-to-ground, and three-phase faults. The implemented application is tested by using fault data in a real electrical distribution power system
Resumo:
This Technical Report presents a tentative protocol used to assess the viability of powersupply systems. The viability of power-supply systems can be assessed by looking at the production factors (e.g. paid labor, power capacity, fossil-fuels) – needed for the system to operate and maintain itself – in relation to the internal constraints set by the energetic metabolism of societies. In fact, by using this protocol it becomes possible to link assessments of technical coefficients performed at the level of the power-supply systems with assessments of benchmark values performed at the societal level throughout the relevant different sectors. In particular, the example provided here in the case of France for the year 2009 makes it possible to see that in fact nuclear energy is not viable in terms of labor requirements (both direct and indirect inputs) as well as in terms of requirements of power capacity, especially when including reprocessing operations.
Resumo:
Voltage fluctuations caused by parasitic impedances in the power supply rails of modern ICs are a major concern in nowadays ICs. The voltage fluctuations are spread out to the diverse nodes of the internal sections causing two effects: a degradation of performances mainly impacting gate delays anda noisy contamination of the quiescent levels of the logic that drives the node. Both effects are presented together, in thispaper, showing than both are a cause of errors in modern and future digital circuits. The paper groups both error mechanismsand shows how the global error rate is related with the voltage deviation and the period of the clock of the digital system.