993 resultados para Electrical Activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To asses the onset (%) of patella stabilizer muscles during maximal isometric contraction exercises (MIC) in individuals with and without signs of patellofemoral pain syndrome (PFPS) in open (OKC) and closed (CKC) kinetic chain exercises, Method: Assessments were carried out on 22 women; ten with no complains of anterior knee pain, and 12 with PFPS signs during MIC in OKC and CKC with the knee flexed at 90 degrees. The onset of the electromyographic activity of the vastus mediallis obliquus (VMO), vastus lateralis obliquus (VLO) and vastus lateralis longus (VLL) was identified by means of an algorithm in the Myosystem Br 1 software. The statistical analysis used was Chi-Square test and student`s t test, which are both tests with a level of significance at 5%. Results: The VMO and VLO muscles presented a greater onset compared to the VLL during OKC exercises for both groups and for the PFPS group without CCF No differences were observed between the groups. Conclusion: CKC and OKC exercises seem to benefit the synchronism of the musculature that supposedly benefits the patella stabilizer musculature, and can be recommended in physiotherapeutic treatment programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine whether or not losses of strength or endurance following eccentric and concentric exercise are associated with reduced excitation. The effects of eccentric and concentric work on maximal voluntary isometric contraction (MVC) and surface electromyogram (EMG) of the quadriceps were studied in 10 healthy male subjects following bench-stepping for 20 min with a constant leading leg. Prior to stepping and at 0, 0.25, 0.50, 0.75, 1, 3. 24 and 48 h afterwards the subjects performed a 30 s leg extension MVC with each leg during which the isometric force and the root mean square voltage of the EMG were recorded. In the eccentrically exercised muscles (ECC), MVC0-3 (force during the first 3 s of contraction) fen immediately after the bench-stepping exercise to 88 +/- 2% (mean SE) of the pre-exercise value and remained significantly lower than the concentrically exercised muscles (p < 0.05). The muscle weakness in the ECC could not be attributed to central fatigue as surface EMG amplitude at MVC0-3 increased during the recovery period. Muscle weakness after eccentric exercise appears to be due to contractile failure, which is not associated with a reduction in excitation as assessed by surface EMG. Muscular fatigue over 30 s did not change in the two muscle groups after exercise (p = 0.79), indicating that the ECC were weaker but not more fatiguable after exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present the explicit series solution of a specific mathematical model from the literature, the Deng bursting model, that mimics the glucose-induced electrical activity of pancreatic beta-cells (Deng, 1993). To serve to this purpose, we use a technique developed to find analytic approximate solutions for strongly nonlinear problems. This analytical algorithm involves an auxiliary parameter which provides us with an efficient way to ensure the rapid and accurate convergence to the exact solution of the bursting model. By using the homotopy solution, we investigate the dynamical effect of a biologically meaningful bifurcation parameter rho, which increases with the glucose concentration. Our analytical results are found to be in excellent agreement with the numerical ones. This work provides an illustration of how our understanding of biophysically motivated models can be directly enhanced by the application of a newly analytic method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cerebral ischemic preconditioning (IPC), a first sublethal ischemia increases the resistance of neurons to a subsequent severe ischemia. Despite numerous studies, the mechanisms are not yet fully understood. Our goal is to develop an in vitro model of IPC on hippocampal organotypic slice cultures. Instead of anoxia, we chose to apply varying degrees of hypoxia that allows us various levels of insult graded from mild to severe. Cultures are exposed to combined oxygen and glucose deprivation (OGD) of varying intensities, ranging from mild to severe, assessing both the electrical activity and cell death. IPC was accomplished by exposure to the mildest ischemia condition (10% of O2 for 15 min) 24 h before the severe deprivation (5% of O2 for 30 min). Interestingly, IPC not only prevented delayed ischemic cell death 6 days after insult but also the transient loss of evoked potential response. The major interest and advantage of this system over both the acute slice preparation and primary cell cultures is the ability to simultaneously measure the delayed neuronal damage and neuronal function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION. Patient-ventilator asynchrony is a frequent issue in non invasivemechanical ventilation (NIV) and leaks at the patient-mask interface play a major role in itspathogenesis. NIV algorithms alleviate the deleterious impact of leaks and improve patient-ventilator interaction. Neurally adusted ventilatory assist (NAVA), a neurally triggered modethat avoids interferences between leaks and the usual pneumatic trigger, could further improvepatient-ventilator interaction in NIV patients.OBJECTIVES. To evaluate the feasibility ofNAVAin patients receiving a prophylactic postextubationNIV and to compare the respective impact ofPSVandNAVAwith and withoutNIValgorithm on patient-ventilator interaction.METHODS. Prospective study conducted in 16 beds adult critical care unit (ICU) in a tertiaryuniversity hospital. Over a 2 months period, were included 17 adult medical ICU patientsextubated for less than 2 h and in whom a prophylactic post-extubation NIV was indicated.Patients were randomly mechanically ventilated for 10 min with: PSV without NIV algorithm(PSV-NIV-), PSV with NIV algorithm (PSV-NIV+),NAVAwithout NIV algorithm (NAVANIV-)and NAVA with NIV algorithm (NAVA-NIV+). Breathing pattern descriptors, diaphragmelectrical activity, leaks volume, inspiratory trigger delay (Tdinsp), inspiratory time inexcess (Tiexcess) and the five main asynchronies were quantified. Asynchrony index (AI) andasynchrony index influenced by leaks (AIleaks) were computed.RESULTS. Peak inspiratory pressure and diaphragm electrical activity were similar in thefour conditions. With both PSV and NAVA, NIV algorithm significantly reduced the level ofleak (p\0.01). Tdinsp was not affected by NIV algorithm but was shorter in NAVA than inPSV (p\0.01). Tiexcess was shorter in NAVA and PSV-NIV+ than in PSV-NIV- (p\0.05).The prevalence of double triggering was significantly lower in PSV-NIV+ than in NAVANIV+.As compared to PSV,NAVAsignificantly reduced the prevalence of premature cyclingand late cycling while NIV algorithm did not influenced premature cycling. AI was not affectedby NIV algorithm but was significantly lower in NAVA than in PSV (p\0.05). AIleaks wasquasi null with NAVA and significantly lower than in PSV (p\0.05).CONCLUSIONS. NAVA is feasible in patients receiving a post-extubation prophylacticNIV. NAVA and NIV improve patient-ventilator synchrony in different manners. NAVANIV+offers the best patient-ventilator interaction. Clinical studies are required to assess thepotential clinical benefit of NAVA in patients receiving NIV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was performed in an attempt to develop an in vitro integrated testing strategy (ITS) to evaluate drug-induced neurotoxicity. A number of endpoints were analyzed using two complementary brain cell culture models and an in vitro blood-brain barrier (BBB) model after single and repeated exposure treatments with selected drugs that covered the major biological, pharmacological and neuro-toxicological responses. Furthermore, four drugs (diazepam, cyclosporine A, chlorpromazine and amiodarone) were tested more in depth as representatives of different classes of neurotoxicants, inducing toxicity through different pathways of toxicity. The developed in vitro BBB model allowed detection of toxic effects at the level of BBB and evaluation of drug transport through the barrier for predicting free brain concentrations of the studied drugs. The measurement of neuronal electrical activity was found to be a sensitive tool to predict the neuroactivity and neurotoxicity of drugs after acute exposure. The histotypic 3D re-aggregating brain cell cultures, containing all brain cell types, were found to be well suited for OMICs analyses after both acute and long term treatment. The obtained data suggest that an in vitro ITS based on the information obtained from BBB studies and combined with metabolomics, proteomics and neuronal electrical activity measurements performed in stable in vitro neuronal cell culture systems, has high potential to improve current in vitro drug-induced neurotoxicity evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Pulseless electrical activity (PEA) cardiac arrest is defined as a cardiac arrest (CA) presenting with a residual organized electrical activity on the electrocardiogram. In the last decades, the incidence of PEA has regularly increased, compared to other types of CA like ventricular fibrillation or pulseless ventricular tachycardia. PEA is frequently induced by reversible conditions. The "4 (or 5) H" & "4 (or 5) T" are proposed as a mnemonic to asses for Hypoxia, Hypovolemia, Hypo- /Hyperkalaemia, Hypothermia, Thrombosis (cardiac or pulmonary), cardiac Tamponade, Toxins, and Tension pneumothorax. Other pathologies (intracranial haemorrhage, severe sepsis, myocardial contraction dysfunction) have been identified as potential causes for PEA, but their respective probability and frequencies are unclear and they are not yet included into the resuscitation guidelines. The aim of this study was to analyse the aetiologies of PEA out-of-hospital CA, in order to evaluate the relative frequencies of each cause and therefore to improve the management of patients suffering a PEA cardiac arrest. Method: This retrospective study was based on data routinely and prospectively collected for each PEMS intervention. All adult patients treated from January 1st 2002 to December 2012 31st by the PEMS for out-of-hospital cardiac arrest, with PEA as the first recorded rhythm, and admitted to the emergency department (ED) of the Lausanne University Hospital were included. The aetiologies of PEA cardiac arrest were classified into subgroups, based on the classical H&T's classification, supplemented by four other subgroups analysis: trauma, intra-cranial haemorrhage (ICH), non-ischemic cardiomyopathy (NIC) and undetermined cause. Results: 1866 OHCA were treated by the PEMS. PEA was the first recorded rhythm in 240 adult patients (13.8 %). After exclusion of 96 patients, 144 patients with a PEA cardiac arrest admitted to the ED were included in the analysis. The mean age was 63.8 ± 20.0 years, 58.3% were men and the survival rate at 48 hours was 29%. 32 different causes of OHCA PEA were established for 119 patients. For 25 patients (17.4 %), we were unable to attribute a specific cause for the PEA cardiac arrest. Hypoxia (23.6 %), acute coronary syndrome (12.5%) and trauma (12.5 %) were the three most frequent causes. Pulmonary embolism, Hypovolemia, Intoxication and Hyperkaliemia occurs in less than 10% of the cases (7.6 %, 5.6 %, 3.5%, respectively 2.1 %). Non ischemic cardiomyopathy and intra-cranial haemorrhage occur in 8.3 % and 6.9 %, respectively. Conclusions: According to our results, intra-cranial haemorrhage and non-ischemic cardiomyopathy represent noticeable causes of PEA in OHCA, with a prevalence equalling or exceeding the frequency of classical 4 H's and 4 T's aetiologies. These two pathologies are potentially accessible to simple diagnostic procedures (native CT-scan or echocardiography) and should be included into the 4 H's and 4 T's mnemonic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most of cells bradykinin (BK) induces intracellular calcium mobilization. In pancreatic beta cells intracellular calcium is a major signal for insulin secretion. In these cells, glucose metabolism yields intracellular ATP which blocks membrane potassium channels. The membrane depolarizes, voltage-dependent Ca2+ channels are activated and the intracellular calcium load allows insulin secretion. Repolarization occurs due to activation of the Ca2+-dependent K+ channel. The insulin secretion depends on the integrity of this oscillatory process (bursts). Therefore, we decided to determine whether BK (100 nM) induces bursts in the presence of a non-stimulatory glucose concentration (5.6 mM). During continuous membrane voltage recording, our results showed that bursts were obtained with 11 mM glucose, blocked with 5.6 mM glucose and recovered with 5.6 mM glucose plus 100 nM BK. Thus, the stimulatory process obtained in the presence of BK and of a non-stimulatory concentration of glucose in the present study suggests that BK may facilitate the action of glucose on beta cell secretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The atmospheric electrical Potential Gradient (PG) arises from global thunderstorm activity, but surface measurements of the atmospheric Potential Gradient (PG) are influenced by global thunderstorms and local aerosol concentration changes. The local aerosol change can be monitored independently, and in some cases the concentration changes are closely related to PG changes. For these circumstances, a general theory to remove the local aerosol influence on PG measurements has been developed. Continuous measurements of PG and aerosol mass concentration were made during 24–31 Dec, 2005 within an urban environment at Reading, UK. The average diurnal variation of PG showed a double diurnal cycle, with maxima in the early morning and evening hours. The aerosol concentration has similar double maxima. Removing the aerosol using from the PG and aerosol correlation returns a single diurnal cycle, suggestive of the more global PG diurnal cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relating the measurable, large scale, effects of anaesthetic agents to their molecular and cellular targets of action is necessary to better understand the principles by which they affect behavior, as well as enabling the design and evaluation of more effective agents and the better clinical monitoring of existing and future drugs. Volatile and intravenous general anaesthetic agents (GAs) are now known to exert their effects on a variety of protein targets, the most important of which seem to be the neuronal ion channels. It is hence unlikely that anaesthetic effect is the result of a unitary mechanism at the single cell level. However, by altering the behavior of ion channels GAs are believed to change the overall dynamics of distributed networks of neurons. This disruption of regular network activity can be hypothesized to cause the hypnotic and analgesic effects of GAs and may well present more stereotypical characteristics than its underlying microscopic causes. Nevertheless, there have been surprisingly few theories that have attempted to integrate, in a quantitative manner, the empirically well documented alterations in neuronal ion channel behavior with the corresponding macroscopic effects. Here we outline one such approach, and show that a range of well documented effects of anaesthetics on the electroencephalogram (EEG) may be putatively accounted for. In particular we parameterize, on the basis of detailed empirical data, the effects of halogenated volatile ethers (a clinically widely used class of general anaesthetic agent). The resulting model is able to provisionally account for a range of anaesthetically induced EEG phenomena that include EEG slowing, biphasic changes in EEG power, and the dose dependent appearance of anomalous ictal activity, as well as providing a basis for novel approaches to monitoring brain function in both health and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the influence an abdominal support attached to a traditional stool, of those used by dentists, has on the body's distribution of the electrical activity of the superior trapezius and the longissimus thoracic muscles of dental students during the execution of a clinical procedure. The results showed no significant difference in the body's distribution in the seat and backrest, but did reveal there was a weight discharge of 3.1 +/- 1.9% of dentist's body weight in the abdominal support. The 9 o'clock position proved to be the best position to perform clinical procedures. It was also observed that the position was closer to the body's axis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the electrical behavior pattern of the Rectus abdominis muscle by qualitative and quantitative analysis of the electromyographic signal obtained from its superior, medium and inferior portions during dynamic and static activities. Ten voluntaries (aged X = 17.8 years, SD = 1.6) athletic males were studied without history of muscle skeletal disfunction. For the quantitative analysis the RMS (Root Mean Square) values obtained in the electromyographic signal during the isometric exercises were normalized and expressed in maximum voluntary isometric contraction percentages. For the qualitative analysis of the dynamic activity the electromyographic signal was processed by full-wave rectification, linear envelope and normalization (amplitude and time), so that the resulting curve of the processed signal was submitted to descriptive graphic analysis. The results of the quantitative study show that there is not a statistically significant difference among the portions of the muscle. Qualitative analysis demonstrated two aspects: the presence of a common activation electric pattern in the portions of Rectus abdominis muscle and the absence of significant difference in the inclination angles in the electrical activity curve during the isotonic exercises.