962 resultados para Electric load forecasting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is the development of a methodology for electric load forecasting based on a neural network. Here, it is used Backpropagation algorithm with an adaptive process based on fuzzy logic. This methodology results in fast training, when compared to the conventional formulation of Backpropagation algorithm. Results are presented using data from a Brazilian Electric Company and the performance is very good for the proposal objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An agent based model for spatial electric load forecasting using a local movement approach for the spatiotemporal allocation of the new loads in the service zone is presented. The density of electrical load for each of the major consumer classes in each sub-zone is used as the current state of the agents. The spatial growth is simulated with a walking agent who starts his path in one of the activity centers of the city and goes to the limits of the city following a radial path depending on the different load levels. A series of update rules are established to simulate the S growth behavior and the complementarity between classes. The results are presented in future load density maps. The tests in a real system from a mid-size city show a high rate of success when compared with other techniques. The most important features of this methodology are the need for few data and the simplicity of the algorithm, allowing for future scalability. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When dealing with spatio-temporal simulations of load growth inside a service zone, one of the most important problems faced by a Distribution Utility is how to represent the different relationships among different areas. A new load in a certain part of the city could modify the load growth in other parts of the city, even outside of its radius of influence. These interactions are called Urban Dynamics. This work aims to discuss how to implement Urban Dynamics considerations into the spatial electric load forecasting simulations using multi-agent simulations. To explain the approach, three examples are introduced, including the effect of an attraction load, the effect of a repulsive load, and the effect of several attraction/repulsive loads at the same time when considering the natural load growth. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-agent framework for spatial electric load forecasting, especially suited to simulate the different dynamics involved on distribution systems, is presented. The service zone is divided into several sub-zones, each subzone is considered as an independent agent identified with a corresponding load level, and their relationships with the neighbor zones are represented as development probabilities. With this setting, different kind of agents can be developed to simulate the growth pattern of the loads in distribution systems. This paper presents two different kinds of agents to simulate different situations, presenting some promissory results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for spatial electric load forecasting using multi-agent systems, especially suited to simulate the local effect of special loads in distribution systems is presented. The method based on multi-agent systems uses two kinds of agents: reactive and proactive. The reactive agents represent each sub-zone in the service zone, characterizing each one with their corresponding load level, represented in a real number, and their relationships with other sub-zones represented in development probabilities. The proactive agent carry the new load expected to be allocated because of the new special load, this agent distribute the new load in a propagation pattern. The results are presented with maps of future expected load levels in the service zone. The method is tested with data from a mid-size city real distribution system, simulating the effect of a load with attraction and repulsion attributes. The method presents good results and performance. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a filter based on a general regression neural network and a moving average filter, for preprocessing half-hourly load data for short-term multinodal load forecasting, discussed in another paper. Tests made with half-hourly load data from nine New Zealand electrical substations demonstrate that this filter is able to handle noise, missing data and abnormal data. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, it is necessary a technique that is precise, trustable and has a short-time processing. This paper proposes two methodologies based on general regression neural networks for short-term multinodal load forecasting. The first individually forecast the local loads and the second forecast the global load and individually forecast the load participation factors to estimate the local loads. To design the forecasters it wasn't necessary the previous study of the local loads. Tests were made using a New Zealand distribution subsystem and the results obtained are compatible with the ones founded in the specialized literature. © 2011 IEEE.